摘要:
In certain aspects, a method is provided for measuring power using a resistive element coupled between a power amplifier and an antenna. The method includes squaring a voltage from a first terminal of the resistive element to obtain a first signal, squaring a voltage from a second terminal of the resistive element to obtain a second signal, and generating a measurement signal based on a difference between the first signal and the second signal. In some implementations, the resistive element is implemented with a power switch.
摘要:
In certain aspects, a method is provided for measuring power using a resistive element coupled between a power amplifier and an antenna. The method includes squaring a voltage from a first terminal of the resistive element to obtain a first signal, squaring a voltage from a second terminal of the resistive element to obtain a second signal, and generating a measurement signal based on a difference between the first signal and the second signal. In some implementations, the resistive element is implemented with a power switch.
摘要:
In certain aspects, a method is provided for measuring power using a resistive element coupled between a power amplifier and an antenna. The method includes squaring a voltage from a first terminal of the resistive element to obtain a first signal, squaring a voltage from a second terminal of the resistive element to obtain a second signal, and generating a measurement signal based on a difference between the first signal and the second signal. In some implementations, the resistive element is implemented with a power switch.
摘要:
A system includes a first circuit and a second circuit. The first circuit includes a first MOS transistor having a gate and a drain. The first circuit is configured to receive a radio frequency (RF) signal at the gate of the first MOS transistor. The drain of the first MOS transistor is configured to output a first current that is proportional to the square of the input voltage of the RF signal while receiving the RF signal. The second circuit includes a second MOS transistor having a source configured to receive a first current from the first circuit. The second MOS transistor is biased in a triode region and has a channel resistance between the source and a drain. The second circuit is configured to output a voltage proportional to the value of the power of the RF signal received by the first circuit.
摘要:
A remote radio frequency (RF) power sensing unit including a first module and a second module. The first module may be configured to generate a digital output representative of a power level of a radio frequency (RF) signal. The second module may be configured to convert the digital output of the first module to a digital signal communicating the power level and transmit the digital signal communicating the power level over a wireless communication channel using a wireless protocol.
摘要:
A power distribution unit (PDU) disposable in an electrical equipment rack. The PDU has a housing, a power input penetrating the housing, outlets in the housing, a processor disposed in the housing, voltage and current sensors, and a voltage calculation procedure communicable with the processor. The processor samples voltage and current waveforms and calculates RMS values and other power parameters. A method of managing electrical loads each drawing electrical power from a PDU includes repeatedly sampling voltage across and current flowing through each of the loads, calculating raw RMS values of voltage and current, and scaling the raw RMS values to obtain corrected RMS voltage and current values and other power parameters.
摘要:
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
摘要:
A wide power range radiation monitor includes a pair of diodes with their cathodes interconnected and with an additional capacitor coupled in parallel to one of the diodes. The detector, of the radiation monitor provides two outputs, a low power output and a high power output, which outputs are connected to the anodes of the detector diodes. The arrangement of dual diodes and capacitance provide the diode detector of the monitor with a greater than 40 dB square law region.
摘要:
A wide power range radiation monitor includes a pair of diodes with their cathodes interconnected and with an additional capacitor coupled in parallel to one of the diodes. The detector of the radiation monitor provides two outputs, a low power output and a high power output, which outputs are connected to the anodes of the detector diodes. The arrangement of dual diodes and capacitance provide the diode detector of the monitor with a greater than 40 dB square law region.
摘要:
A wide dynamic range radio-frequency power sensor having a low-power sensor portion and a high-power sensor portion is described. Both sensing portions are connected to an input signal at the same time without the use of a signal splitter. In the preferred embodiment, a single radio-frequency load serves both sensor portions. Each sensor portion has its own output terminal. The low-power sensor portion includes a pair of diodes. The high-power sensor portion (which includes the radio-frequency load) may include a pair of diodes preceded by an attenuator, or a pair of thermocouples.