Abstract:
In some aspects, an electronic device may display a keyboard user interface on a touchscreen display panel. The electronic device may detect a key press interaction with the keyboard user interface. The electronic device may trigger one or more haptic actuators to generate a vibration waveform associated with a haptic pattern that is based at least in part on a context associated with the key press interaction. Numerous other aspects are described.
Abstract:
Methods, devices and systems for controlling a fingerprint sensor system are disclosed. Some examples involve receiving a contact indication corresponding to a contact of an object with a surface of an apparatus and determining, responsive to the contact indication, multiple force values corresponding to contact of the object with the surface during a force monitoring time interval. Some examples involve determining whether at least a plurality of the multiple force values exceeds a force threshold and controlling a fingerprint sensor system based, at least in part, on whether at least the plurality of the multiple force values exceeds the force threshold.
Abstract:
An apparatus may include a cover layer, a layer of first metamaterial proximate (or in) the cover layer, a light source system configured for providing light to the layer of first metamaterial and a receiver system. The first metamaterial may include nanoparticles configured to create ultrasonic waves when illuminated by light. The receiver system may include an ultrasonic receiver system configured to receive ultrasonic waves reflected from a target object in contact with, or proximate, a surface of the cover layer. The control system may be configured to receive ultrasonic receiver signals from the ultrasonic receiver system corresponding to the ultrasonic waves reflected from the target object and to perform an authentication process and/or an imaging process that is based, at least in part, on the ultrasonic receiver signals.
Abstract:
When communications of a single radio access technology (RAT), or different radio access technologies in a proximate communication spectrum are operating at the same time, potential interference between devices may occur. To reduce the interference, the time division duplex (TDD) configuration of one or more conflicting device may be altered. For example, at the edge of a communication region, TDD configurations used by edge base stations to communicate with mobile devices may be set to reduce interference. As another example, communications of a first device may be altered so the first device schedules uplink communications when a second device also has uplink communications scheduled. Other configurations may also be implemented.
Abstract:
A die includes fins extending in a first direction, a gate formed over the fins, the gate extending in a second direction that is perpendicular to the first direction, a first source/drain contact layer formed over the fins and extending in the second direction, and a second source/drain contact layer formed over the fins and extending in the second direction, wherein the first source/drain contact layer and the second source/drain contact layer are on opposite sides of the gate. The die also includes a first source/drain metal layer electrically coupled to the first source/drain contact layer, and a second source/drain metal layer electrically coupled to the second source/drain contact layer, wherein the first source/drain metal layer and the second source/drain metal layer do not overlap one or more of the fins.
Abstract:
A method may involve obtaining a latent fingerprint on a surface, storing the latent fingerprint, obtaining a live fingerprint on the surface, and authenticating the live fingerprint based in part on the stored latent fingerprint and in part on previously-authenticated fingerprint data. The method may involve rejecting authentication of the live fingerprint as a potential spoof, if the live fingerprint matches the latent fingerprint under a relatively strict correlation test. The method may also involve, when the live fingerprint doesn't closely match the latent fingerprint, granting authentication of the live fingerprint if the live fingerprint matches the previously-authenticated fingerprint data under a relatively loose correlation test.
Abstract:
Some disclosed methods may involve receiving an indication of a digit touching a surface of an apparatus in an active fingerprint sensor area, obtaining current fingerprint image data from the digit and performing a first authentication process based, at least in part, on the current fingerprint image data. Responsive to determining that the first authentication process is an unsuccessful authentication process, some methods may involve obtaining non-digit image data after the digit has been removed from the surface, performing a second authentication process based, at least in part, on the non-digit image data and providing a notification regarding the outcome of the second authentication process. In some examples, the non-digit image data may be obtained and the second authentication process may be performed without providing a notification regarding the unsuccessful outcome of the first authentication process.
Abstract:
Various aspects of the present disclosure generally relate to control of a user device under a wet condition. In some aspects, a user device may determine whether the user device is operating under a wet condition; select, based at least in part on whether the user device is operating under the wet condition, a set of input components to control the user device, wherein the set of input components is selected from a plurality of different sets of input components; and configure a user interface of the user device according to the set of input components. Numerous other aspects are provided.
Abstract:
When communications of a single radio access technology (RAT), or different radio access technologies in a proximate communication spectrum are operating at the same time, potential interference between devices may occur. To reduce the interference, the time division duplex (TDD) configuration of one or more conflicting device may be altered. For example, at the edge of a communication region, TDD configurations used by edge base stations to communicate with mobile devices may be set to reduce interference. As another example, communications of a first device may be altered so the first device schedules uplink communications when a second device also has uplink communications scheduled. Other configurations may also be implemented.
Abstract:
Some methods may involve receiving fingerprint image data and a first set of background image data from a fingerprint sensor and determining first processed fingerprint image data via a subtraction of the first set of background image data from the fingerprint image data. Some methods may involve obtaining force data corresponding to a force applied to the fingerprint sensor when the fingerprint image data were obtained. Some methods may involve obtaining a second set of background image data corresponding to the force data. Some methods may involve determining second processed fingerprint image data based, at least in part, on the first processed fingerprint image data and the second set of background image data, and outputting the second processed fingerprint image data. In some examples, determining the second processed fingerprint image data may involve a machine learning model. Some examples may involve estimating residual noise based on the force data.