Abstract:
A method for coding a block of video data in simplified block prediction mode of a constant bitrate video coding scheme for transmission over display links is disclosed. In one aspect, the method includes determining a candidate block to be used to predict a current block in a current slice, the candidate block being within a range of pixel positions that each correspond to a reconstructed pixel in the current slice. The range of pixel positions may comprise (i) a first region including one or more first pixel positions in a first line of pixels that overlaps the current block, and (ii) a second region including one or more second pixel positions in a second line of pixels that does not overlap the current block. The method may further comprise determining and signaling a prediction vector indicative of a pixel position of the candidate block.
Abstract:
Systems, methods, and devices for video coding that may obtain a rectangular chroma block having first and second square sub-blocks are disclosed. These systems, methods, and devices may also decode a first coded block flag (CBF) for the first square sub-block to indicate whether the first square sub-block includes at least one nonzero transform coefficient. These systems, methods, and devices may also decode a second CBF for the second square sub-block to indicate whether the second square sub-block includes at least one nonzero transform coefficient and not decoding a CBF for the rectangular chroma block.
Abstract:
A method for coding a block of video data in block prediction mode of a constant bitrate video coding scheme for transmission over display links is disclosed. In one aspect, the method includes determining one or more first candidate regions to be used to predict a current region within the block of video data using a first partitioning scheme, determining one or more second candidate regions to be used to predict the current region using a second partitioning scheme, determining that a first cost associated with coding the current region using the first partitioning scheme is greater than a second cost associated with coding the current region using the second partitioning scheme, and coding the current region using the second partitioning scheme.
Abstract:
An apparatus for coding video data according to certain aspects includes a memory for storing the video data and a processor. The memory includes a buffer. The processor is configured to receive the video data to be coded. The processor is further configured to determine a quantization parameter (QP) of a current block of the video data without considering a type of content of the video data and a rate-distortion model associated with the type of content. The processor is also configured to code the current block in a bitstream using the determined QP.
Abstract:
A video coder can be configured to code a random access point (RAP) picture and code one or more decodable leading pictures (DLPs) for the RAP picture such that all pictures that are targeted for discard precede the DLPs associated with the RAP picture in display order.
Abstract:
According to certain aspects, an apparatus for coding video data includes a memory for storing the video data and a processor. The memory includes a buffer. The processor is configured to receive the video data to be coded. The processor is further configured to determine a Lagrangian parameter for a coding mode based at least in part on a bit rate of the coding mode and a fullness of the buffer.
Abstract:
The techniques of this disclosure are directed toward the use of modified quantization parameter (QP) values to calculate quantized and dequantized transform coefficients of a video block with uniform QP granularity. Conventionally, when a quantization matrix is used during quantization and dequantization of transform coefficients, the quantization matrix entries act as scale factors of a quantizer step-step corresponding to a base QP value, which results in non-uniform QP granularity. To provide uniform QP granularity across all quantization matrix entries, the techniques include calculating modified QP values for transform coefficients based on associated quantization matrix entries used as offsets to a base QP value. At a video decoder, the techniques include calculating dequantized transform coefficients from quantized transform coefficients based on the modified QP values. At a video encoder, the techniques include calculating quantized transform coefficients from transform coefficients based on the modified QP values.
Abstract:
Techniques are described for a video coder (e.g., video encoder or video decoder) that is configured to select a context pattern from a plurality of context patterns that are the same for a plurality of scan types. Techniques are also described for a video coder that is configured to select a context pattern that is stored as a one-dimensional context pattern and identifies contexts for two or more scan types.
Abstract:
A system and method for coding a block of video data in block prediction mode for display stream compression (DSC) is disclosed. In one aspect, the method includes determining a candidate block to be used for predicting a current block in a current slice. The candidate block may be within a range of locations defined by one or more block prediction parameters. The method further includes determining, based on the candidate block and the current block, a prediction vector identifying a location of the candidate block with respect to the current block, and coding the current block in block prediction mode at least in part via signaling the prediction vector identifying the location of the candidate block with respect to the current block.
Abstract:
A video decoder may be configured to decode a first value representative of a difference between a base most significant bits (MSBs) value of a picture order count (POC) value of a current picture of video data and a first MSBs value of a first POC value of a first long-term reference picture of the video data, decode a second value representative of a difference between a second MSBs value of a second POC value of a second long-term reference picture of the video data and the first MSBs value, wherein the first POC value and the second POC value have different least significant bits values, and decode at least a portion of a current picture of the video data relative to at least one of the first long-term reference picture and the second long-term reference picture.