摘要:
A light emitting device includes a p-side heterostructure having a short period superlattice (SPSL) formed of alternating layers of AlxhighGa1-xhighN doped with a p-type dopant and AlxlowGa1-xlowN doped with the p-type dopant, where xlow≦xhigh≦0.9. Each layer of the SPSL has a thickness of less than or equal to about six bi-layers of AlGaN.
摘要翻译:发光器件包括具有由掺杂有p型掺杂剂的Al x Ga Ga x Ga x Ga x Ga N交替层和掺杂有p型掺杂剂的Al x O x Ga 1-x low N形成的短周期超晶格(SPSL)的p侧异质结构,其中xlow≤xhigh≤ 0.9。 SPSL的每个层具有小于或等于约六个双层AlGaN的厚度。
摘要:
Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, λ, and a degree of polarization, PD, where PD>0.006λ−b for 200 nm≦λ≦400 nm, wherein b≦1.5.
摘要:
A light emitting diode includes an active region configured to emit light, a composite electrical contact layer, and a transparent electron blocking hole transport layer (TEBHTL). The composite electrical contact layer includes two materials. At least one of the two materials is a metal configured to reflect a portion of the emitted light. The TEBHTL is arranged between the composite electrical contact layer and the active region. The TEBHTL has a thickness that extends at least a majority of a distance between the active region and the composite electrical contact layer. The TEBHTL has a band-gap greater than a band-gap of light emitting portions of the active region. The band-gap of the TEBHTL decreases as a function of distance from the active region to the composite electrical contact layer over a majority of the thickness of the TEBHTL.
摘要:
An electronic device, including an organic semiconductor, the organic semiconductor having a first polymer having a first molecular weight and a first length, and a second polymer having a second molecular weight and a second length, wherein the second length is longer than the first length.
摘要:
A light emitting diode includes an active region configured to emit light, a composite electrical contact layer, and a transparent electron blocking hole transport layer (TEBHTL). The composite electrical contact layer includes tow materials. At least one of the two materials is a metal configured to reflect a portion of the emitted light. The TEBHTL is arranged between the composite electrical contact layer and the active region. The TEBHTL has a thickness that extends at least a majority of a distance between the active region and the composite electrical contact layer. The TEBHTL has a band-gap greater than a band-gap of light emitting portions of the active region. The band-gap of the TEBHTL decreases as a function of distance from the active region to the composite electrical contact layer over a majority of the thickness of the TEBHTL.
摘要:
A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, λlase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
摘要:
Light emitting devices having an enhanced degree of polarization, PD, and methods for fabricating such devices are described. A light emitting device may include a light emitting region that is configured to emit light having a central wavelength, λ, and a degree of polarization, PD, where PD>0.006λ−b for 200 nm≤λ≤400 nm, wherein b≤1.5.
摘要:
A light emitting diode includes an active region configured to emit light, a composite electrical contact layer, and a transparent electron blocking hole transport layer (TEBHTL). The composite electrical contact layer includes tow materials. At least one of the two materials is a metal configured to reflect a portion of the emitted light. The TEBHTL is arranged between the composite electrical contact layer and the active region. The TEBHTL has a thickness that extends at least a majority of a distance between the active region and the composite electrical contact layer. The TEBHTL has a band-gap greater than a band-gap of light emitting portions of the active region. The band-gap of the TEBHTL decreases as a function of distance from the active region to the composite electrical contact layer over a majority of the thickness of the TEBHTL.
摘要:
A vertical external cavity surface emitting laser (VECSEL) structure includes a heterostructure and first and second reflectors. The heterostructure comprises an active region having one or more quantum well structures configured to emit radiation at a wavelength, λlase, in response to pumping by an electron beam. One or more layers of the heterostructure may be doped. The active region is disposed between the first reflector and the second reflector and is spaced apart from the first reflector by an external cavity. An electron beam source is configured to generate the electron beam directed toward the active region. At least one electrical contact is electrically coupled to the heterostructure and is configured to provide a current path between the heterostructure and ground.
摘要:
A method of producing a semiconductor device can include receiving a Group III-N wafer as a substrate, initiating a first inversion domain boundary layer to form a thin etch stop layer, terminating the etch stop layer with a second inversion domain boundary layer, and subsequently continuing the active region growth.