Abstract:
An array of sensor devices, each sensor including a set of semiconducting nanotraces having a width less than about 100 nm is provided. Method for fabricating the arrays is disclosed, providing a top-down approach for large arrays with multiple copies of the detection device in a single processing step. Nanodimensional sensing elements with precise dimensions and spacing to avoid the influence of electrodes are provided. The arrays may be used for multiplex detection of chemical and biomolecular species. The regular arrays may be combined with parallel synthesis of anchor probe libraries to provide a multiplex diagnostic device. Applications for gas phase sensing, chemical sensing and solution phase biomolecular sensing are disclosed.
Abstract:
Method and apparatus for determining direction from which electromagnetic radiation originates and spectral characteristics of the radiation are provided. Lenses, diffraction gratings, which may be present on the surface of the lenses, and mirrors direct radiation to a photodetector. Lens and grating parameters, along with the location, size, relative spacing and orientation of diffracted orders of radiation detected by the photodetector are used for determining direction from which the radiation originates.
Abstract:
An array of sensor devices, each sensor including a set of semiconducting nanotraces having a width less than about 100 nm is provided. Method for fabricating the arrays is disclosed, providing a top-down approach for large arrays with multiple copies of the detection device in a single processing step. Nanodimensional sensing elements with precise dimensions and spacing to avoid the influence of electrodes are provided. The arrays may be used for multiplex detection of chemical and biomolecular species. The regular arrays may be combined with parallel synthesis of anchor probe libraries to provide a multiplex diagnostic device. Applications for gas phase sensing, chemical sensing and solution phase biomolecular sensing are disclosed.
Abstract:
An apparatus comprises a housing defining a chamber that has a liquid disposed therein, and a sensor submerged in the liquid. The sensor comprises a porous conductive film on a substrate, and the film comprises chemiresistive semiconducting metal oxide structures. The sensor also comprises an electrode pair operably connected to the porous conductive film for generating electric current in the film and for detecting a change in an electrical property of the film. The apparatus can be used to detect, identify, and quantify ions and molecules in a liquid sample. Molecules and ions, in a liquid sample, that interact with the porous conductive film can cause a change in an electrical property of the film. The change in electrical property of the film can be correlated with the presence and amount of the molecules or ions.
Abstract:
An apparatus comprises a housing defining a chamber that has a liquid disposed therein, and a sensor submerged in the liquid. The sensor comprises a porous conductive film on a substrate, and the film comprises chemiresistive semiconducting metal oxide structures. The sensor also comprises an electrode pair operably connected to the porous conductive film for generating electric current in the film and for detecting a change in an electrical property of the film. The apparatus can be used to detect, identify, and quantify ions and molecules in a liquid sample. Molecules and ions, in a liquid sample, that interact with the porous conductive film can cause a change in an electrical property of the film. The change in electrical property of the film can be correlated with the presence and amount of the molecules or ions.
Abstract:
Methods and sensors for detection and quantification of one or more analyte in a test sample are described. A response profile of an ion sensor to a control sample of a known interrogator ion is determined. The ion sensor is exposed to a test sample then to a second sample comprising the known interrogator ion, and a test sample response profile of the ion sensor is determined. One or more test sample sensor response profiles are compared with one or more control sensor response profiles for detecting, identifying, and quantifying one or more analytes in the test sample.
Abstract:
Methods and sensors for the detection, identification, and quantification of one or more gas species, including volatile organic compounds, in a test sample are described. Methods employ gas sensors comprising a diffusion matrix present on the sensor surface. A gas analyte in a test sample diffuses through the matrix and is detected upon interaction of the analyte with the sensor. A response profile of a gas sensor to a gas analyte in the test sample is compared to a control gas sensor response profile determined in a similar manner for a known gas species. Comparisons of test sample and control sample sensor response profiles enable detection, identification, and quantification of a gas species analyte in a test sample.
Abstract:
Methods and sensors for detection and quantification of one or more analyte in a test sample are described. A response profile of a gas sensor to a control sample of a known interrogator gas is determined. The gas sensor is exposed to a test sample then to a second sample comprising the known interrogator gas, and a test sample response profile of the gas sensor is determined. One or more test sample sensor response profiles are compared with one or more control sensor response profiles for detecting, identifying, and quantifying one or more analytes in the test sample.
Abstract:
Method and apparatus for determining direction from which electromagnetic radiation originates and spectral characteristics of the radiation are provided. Lenses, diffraction gratings, which may be present on the surface of the lenses, and mirrors direct radiation to a photodetector. Lens and grating parameters, along with the location, size, relative spacing and orientation of diffracted orders of radiation detected by the photodetector are used for determining direction from which the radiation originates.