Abstract:
A memory device comprises a substrate, a tunnel oxide layer, a charge trapping layer, a block oxide layer, a plurality of conductive quantum dots, a metal gate and a source/drain structure. The tunnel oxide layer is disposed on the substrate and has a thickness substantially less than or equal to 2 nm. The charge trapping layer is disposed on the tunnel oxide layer. The quantum dots are embedded in the charge trapping layer. The block oxide layer is disposed on the charge trapping layer. The metal gate essentially consisting of aluminum (Al), copper (Cu), tantalum nitride (TiN), titanium nitride (TaN), aluminum-silicon-copper (Al—Si—Cu) alloys or the arbitrary combinations thereof is disposed on the block oxide layer. The source/drain structure is disposed in the substrate.
Abstract:
A ferroelectric memory device includes a memory layer, made of a silicon-based ferroelectric memory material. The silicon-based ferroelectric memory material includes a mesoporous silica film with nanopores and atomic polar structures on inner walls of the nanopores. The atomic polar structures are formed by asymmetrically bonding metal ions to silicon-oxygen atoms on the inner walls, and the silicon-based ferroelectric memory material includes semiconductor quantum dots, metal quantum dots and metal-semiconductor alloy quantum dots.
Abstract:
A flexible substrate structure including a flexible substrate, a first dielectric layer, a metal-containing layer and a second dielectric layer is provided. The first dielectric layer is located on the flexible substrate. The metal-containing layer has a reflectivity greater than 15% and a heat transfer coefficient greater than 2 W/m-K. The metal-containing layer is disposed between the first dielectric layer and the second dielectric layer, and the second dielectric layer is an inorganic material layer. A flexible transistor including the above-mentioned flexible substrate structure and a method for fabricating the same are also provided.
Abstract:
A chipset with light energy harvester, includes a substrate, a functional element layer, and a light energy harvesting layer, both are stacked vertically on the substrate, and an interconnects connected between the functional element layer and the light energy harvesting layer.
Abstract:
A transistor device structure includes a substrate, a first polycrystalline semiconductor thin film and a first transistor unit. The first polycrystalline semiconductor thin film is disposed on the substrate. A grain diameter of the first polycrystalline semiconductor thin film is greater than 1 micrometer and a thickness of the first polycrystalline semiconductor thin film is less than three hundredths of the grain diameter. The first transistor unit is disposed on the first polycrystalline semiconductor thin film and includes a first gate dielectric layer and a first gate structure. The first gate dielectric layer is disposed on a surface of the first polycrystalline thin film semiconductor. The first gate structure is disposed on a surface of the first gate dielectric layer.
Abstract:
A transistor device structure includes a substrate, a first transistor layer and a second transistor layer. The second transistor layer is disposed between the substrate and the first transistor layer. The first transistor layer includes an insulating structure and a first transistor unit. The insulating structure is disposed on the second transistor layer and has a protruding portion. The first transistor unit includes a gate structure, a source/drain structure, an embedded source/drain structure and a channel. The source/drain structure is disposed beside the gate structure and over the insulating structure. The embedded source/drain structure is disposed underneath the source/drain structure and in the insulating structure. The channel is defined between the protruding portion and the gate structure.
Abstract:
The invention discloses a method for fabricating power-generating module with solar cell. The method includes the steps of providing a flexible substrate; forming a solar cell unit on the flexible substrate by using a high density plasma at a temperature lower than about 150° C.; and forming a circuit unit on the flexible substrate; wherein the solar cell unit is coupled to the circuit unit, so as to provide the power needed for the operation of the circuit unit.