Abstract:
A coil component that includes a coil having a thick coil core and good inductance characteristics and is able to narrow the pitch of a coil electrode is provided. The wiring of a coil electrode in a direction across the direction of a winding axis of the coil electrode includes a plurality of first metal pins and a plurality of second metal pins. By elongating each metal pin, the wiring of the coil electrode is easily elongated in a metal pin direction. Thus, a coil core is easily thickened in the metal pin direction. The wiring of the coil electrode can be formed in the metal pin direction only by arranging the metal pins. Thus, it is possible to provide a coil component that includes a coil having the thick coil core and good inductance characteristics and is able to narrow the pitch of the coil electrode.
Abstract:
A multilayer wiring substrate includes a substrate main body and a plurality of wiring lines. The substrate main body includes first and second main surfaces. The plurality of wiring lines extend from the first main surface toward the second main surface side in the substrate main body. The substrate main body includes a plurality of insulator layers laminated on each other. The wiring lines each include via conductors separately provided in the plurality of insulator layers. In at least one of the plurality of wiring lines, a diameter of the via conductor provided in a first insulator layer defining the first main surface of the substrate main body is smaller than a diameter of the via conductor provided in at least one of the plurality of insulator layers other than the first insulator layer.
Abstract:
An inductor component includes an inductor electrode having two metal pins that form input and output terminals and a connecting conductor that connects one end of each of the metal pins to each other, the inductor electrode arranged such that other ends of the metal pins oppose each other, and a resin layer containing the inductor electrode such that other ends of the metal pins are exposed. The resin layer is formed having a single-layer structure. Variation in the characteristics of the inductor electrode can be reduced as compared to a case where the parts corresponding to the metal pins of the inductor electrode are formed as via conductors or through-hole conductors. Because the resin layer has a single-layer structure, stress acting on joint portions between the metal pins and the connecting conductor can be reduced, which makes it possible to improve the reliability of the inductor component.
Abstract:
A coil component is provided with only first and second columnar conductors that are a part of a coil electrode. This can simplify the manufacturing process and reduce the cost of the coil component. A wiring substrate is provided with substrate-side wiring electrode traces that form the remaining part of the coil electrode. In the process of forming the wiring substrate using a substrate forming technique commonly used, the substrate-side wiring electrode traces can be easily formed together with other wiring electrodes. Therefore, when the coil electrode is configured to be formed by placing the coil component on the wiring substrate, a coil module including the coil component can be inexpensively manufactured.
Abstract:
An electrical element includes a flexible antenna and a rigid member higher in rigidity than the flexible antenna. At least one of the flexible antenna and the rigid member is made of thermoplastic resin. A conductor pattern defining at least a portion of a section that performs the main function of the electrical element is provided at the flexible antenna. No conductor pattern that performs the main function of the electrical element is provided at the rigid member. Opposing surfaces of the flexible antenna and the rigid member are directly joined to each other.
Abstract:
A module includes a wiring board; a component mounted on the wiring board; a columnar conductor for external connection, the columnar conductor being connected at one end thereof to the wiring board; and a resin layer disposed on the wiring board and configured to cover the columnar conductor and the component, with an end face of the columnar conductor exposed from a surface of the resin layer, the end face being at the other end of the columnar conductor. A gap to be filled with solder is formed between the resin layer and a periphery of an end portion of the columnar conductor, the end portion being at the other end of the columnar conductor.
Abstract:
The present disclosure improves the adhesive strength of a shield film in a high-frequency module that includes a shield film that shields components from unwanted electromagnetic waves from the outside. A high-frequency module is provided with: a sealing body that includes a multilayer wiring substrate, components that are mounted on an upper surface of the multilayer wiring substrate, and a sealing resin layer that is stacked on the upper surface of the multilayer wiring substrate and covers the components; and a shield film that covers a surface of the sealing resin layer. A side surface of the sealing body has curved surface portions formed so as to have a curved surface shape, and the curved surface portions are roughened with a plurality of grooves.
Abstract:
An electronic circuit module includes a circuit board, electronic components, an embedding layer, and a conductive film. The circuit board has a first principal surface, a second principal surface and a side surface, and includes a pattern conductor and a via conductor. The conductive film is connected to a conduction path to a ground electrode. The side surface includes a first region, a second region having a longer circumferential length than the first region, and a connection region connecting the first region and the second regions. The conductive film is formed on a region including at least part of each of an outer surface of the embedding layer, the first region, and the connection region. The conductive film formed on at least part of the connection region is connected to an exposed portion in the connection region of the via conductor included in the conduction path to the ground electrode.
Abstract:
A coil component includes an insulating layer in which a magnetic core is embedded, coil electrodes wound around the magnetic core, external connection pad electrodes that are provided on the upper surface of the insulating layer and are connected to the coil electrodes. Each of the coil electrodes includes a plurality of inner metal pins standing in the insulating layer, a plurality of outer metal pins standing in the insulating layer, a plurality of upper wiring patterns formed on the upper surface of the insulating layer, and a plurality of lower wiring pattern formed on the undersurface of the insulating layer. Each of the pad electrodes is directly connected to the upper end surface of the inner metal pin or the outer metal pin, and has, in plan view, an area larger than that of the single upper wiring pattern or the single lower wiring pattern.
Abstract:
An inductor device (1) includes a magnetic body (2) and a conductor buried in the magnetic body (2), and the conductor includes first conductors (3) as metal pins. The magnetic body (2) is formed into a flat plate shape with a first main surface and a second main surface each having a predetermined shape, which oppose each other, and side surfaces connecting the first main surface and the second main surface. The conductor includes the first conductors (3) one end portions of which are exposed to the second main surface of the magnetic body (2) and a second conductor (4) which is connected to the other end portions of the first conductors (3).