Abstract:
A method is disclosed with provides stable growth of SiC single crystals, particularly 4H—SiC single crystals, with an effective crystal growth rate for a prolonged time even at a low temperature range of 2000° C. or lower. A raw material containing Si, Ti and Ni is charged into a crucible made of graphite and heat-melted to obtain a solvent. At the same time, C is dissolved out from the crucible into the solvent to obtain a melt. A SiC seed crystal substrate is then brought into contact with the melt such that SiC is supersaturated in the melt in the vicinity of the surface of the SiC seed crystal substrate, thereby allowing growth and production of an SiC single crystal on the SiC seed crystal substrate.
Abstract:
A semiconductor device and a method of forming thereof has a base body has a field stopping layer, a drift layer, a current spreading layer, a body region, and a source contact region layered in the order on a substrate. A trench that reaches the field stopping layer or the substrate is provided. A gate electrode is provided in the upper half section in the trench. In a section deeper than the position of the gate electrode in the trench, an insulator is buried that has a normal value of insulation breakdown electric field strength equal to or greater than the value of the insulation breakdown electric field strength of the semiconductor material of the base body. This inhibits short circuit between a gate and a drain due to insulation breakdown of an insulator film at the bottom of the trench to realize a high breakdown voltage in a semiconductor device using a semiconductor material such as SiC. The sidewall surfaces of the trench located below the gate electrode is inclined to form a trapezoidal profile.
Abstract:
A sample is placed between a circular polarizer and an analyzer in an optical path between a monochromatic light source and a two-dimensional optical receiver. Parallel beams emitted from the monochromatic light source are converted into circularly polarized light by the circular polarizer. After transmitting the sample, the light is guided to the analyzer. While rotating the analyzer about the axis of the beams, image data are detected by optical receiver at a step of a regular rotation angle, and the detected image data are sampled to be sent to an image processing device in the next stage. On the basis of the image data, an operation is conducted on each pixel to obtain a relative phase difference due to birefringence of the sample, the two-dimensional birefringence distribution including the sign of the relative phase difference, and also the principal axis direction.
Abstract:
A silicon carbide MOS semiconductor device is disclosed which suppresses degradation of efficiency percentage yield with respect to a breakdown voltage even when a surface region with a high impurity concentration is formed by ion implantation with such a high dose as required for attaining a good ohmic contact. The device has a silicon carbide semiconductor substrate, a voltage blocking layer of a first conductivity type formed on the substrate, a body region of a second conductivity type formed on the voltage blocking layer, a body contact region of the second conductivity type formed in a surface region of the body region by selective ion implantation, a surface of the body contact region having such a high impurity concentration as to impart an ohmic contact, a source contact region of the first conductivity type formed in a surface region of the body region by selective ion implantation, a surface of the source contact region having such a high impurity concentration as to impart an ohmic contact, and a source extension region with an impurity concentration lower than that in the source contact region under the source contact region at a region deeper than a tail part of a bottom region of the source contact region by selective ion implantation, the source extension region having an impurity concentration less than 3×1019 cm−3.
Abstract:
A SiC semiconductor substrate is disclosed which includes a SiC single crystal substrate, a nitrogen (N)-doped n-type SiC epitaxial layer in which nitrogen (N) is doped and a phosphorus (P)-doped n-type SiC epitaxial layer in which phosphorus (P) is doped. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are laminated on the silicon carbide single crystal substrate sequentially. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are formed by using two or more different dopants, for example, nitrogen and phosphorus, at the time of epitaxial growth. Basal plane dislocations in a SiC device can be reduced.
Abstract:
A silicon carbide MOS semiconductor device is disclosed which suppresses degradation of efficiency percentage yield with respect to a breakdown voltage even when a surface region with a high impurity concentration is formed by ion implantation with such a high dose as required for attaining a good ohmic contact. The device has a silicon carbide semiconductor substrate, a voltage blocking layer of a first conductivity type formed on the substrate, a body region of a second conductivity type formed on the voltage blocking layer, a body contact region of the second conductivity type formed in a surface region of the body region by selective ion implantation, a surface of the body contact region having such a high impurity concentration as to impart an ohmic contact, a source contact region of the first conductivity type formed in a surface region of the body region by selective ion implantation, a surface of the source contact region having such a high impurity concentration as to impart an ohmic contact, and a source extension region with an impurity concentration lower than that in the source contact region under the source contact region at a region deeper than a tail part of a bottom region of the source contact region by selective ion implantation, the source extension region having an impurity concentration less than 3×1019 cm−3.
Abstract:
The invention provides a thin film device where ionic crystals are epitaxially grown on a Si single crystal substrate through a proper buffer layer, and its for fabrication method. A ZnS layer is first deposited on a Si single crystal substrate. Ionic crystal thin films (an n-GaN layer, a GaN layer, and a p-GaN layer) are deposited thereon. The ZnS thin film is an oriented film excellent in crystallinity and has excellent surface flatness. When ZnS can be once epitaxially grown on the Si single crystal substrate, the ionic crystal thin films can be easily epitaxially grown subsequently. Therefore, ZnS is formed to be a buffer layer, whereby even ionic crystals having differences in lattice constants from Si can be easily epitaxially grown in an epitaxial thin film with few lattice defects on the Si single crystal substrate. The characteristics of a thin film device utilizing it can be enhanced.
Abstract:
A filtered cathodic arc device includes a plasma generating module which generates plasma using an arc discharge which has a cathode target as a deposition raw material; a deposition processing chamber in which a deposition receiving substrate is placed; a curved magnetic field duct that is placed between the plasma generating module and the deposition processing chamber, and that guides plasma generated by the plasma generating module to the deposition processing chamber with a magnetic field; a wool medium formed of a nonmagnetic metal fiber which covers the interior wall of the magnetic field duct; and a bias power source for the wool medium. The device balances reduction of particulate particles and a high deposition rate.
Abstract:
A semiconductor device and a manufacturing method thereof uses a semiconductor substrate of silicon carbide. On one principal surface side of the substrate, at its central section, a layer of silicon carbide or gallium nitride as a semiconductor layer having the thickness at least necessary for breakdown voltage blocking is epitaxially grown or formed from part of the substrate. A recess is formed in the other principal surface side of substrate at a position facing the central section. A supporting section surrounds the bottom of the recess and provides the side face of the recess. The recess is formed by processing such as dry etching. The semiconductor device, even though the semiconductor substrate is made thinner for the realization of small on-resistance, can maintain the strength of the semiconductor substrate capable of reducing occurrence of a wafer cracking during the manufacturing process.
Abstract:
In a semiconductor device having SiC vertical trench MOSFETs, it is aimed to prevent the generation of large scattering in the channel resistance without largely increasing the average value of channel resistance. A 4H-SiC substrate having a major face thereof that is generally a {0001} face and having an off angle α. The trench is formed with the standard deviation σ in scattering of the angle formed by a trench side wall face and a substrate major face within a wafer face. By setting the designed value of the angle formed by the trench side wall face and the substrate major face at an any angle ranging from [(60 degrees)+2σ] to [(90 degrees)−tan−1 (0.87×tan α)−2σ] in forming the trench in the SiC substrate, a semiconductor device in which the angle formed by the trench side wall face and the substrate major face is 60 degrees or more but not more than [(90 degrees)−tan−1 (0.87×tan α)] can be obtained.