Abstract:
Some embodiments include an integrated assembly having a pair of adjacent memory-block-regions, and having a separator structure between the adjacent memory-block-regions. The memory-block-regions include a first stack of alternating conductive levels and first insulative levels. The separator structure includes a second stack of alternating second and third insulative levels. The second insulative levels are substantially horizontally aligned with the conductive levels, and the third insulative levels are substantially horizontally aligned with the first insulative levels. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include memory arrays. The memory arrays may have digit lines under vertically-oriented transistors, with the digit lines interconnecting transistors along columns of the array. Each individual transistor may be directly over only a single digit line, with the single digit line being entirely composed of one or more metal-containing materials. The digit lines can be over a deck, and electrically insulative regions can be directly between the digit lines and the deck. Some embodiments include methods of forming memory arrays. A plurality of linear segments of silicon-containing material may be formed to extend upwardly from a base of the silicon-containing material. The base may be etched to form silicon-containing footings under the linear segments, and the footings may be converted into metal silicide. The linear segments may be patterned into a plurality of vertically-oriented transistor pedestals that extend upwardly from the metal silicide footings.
Abstract:
Microelectronic devices include a tiered stack having vertically alternating insulative and conductive structures. A first series of stadiums is defined in the tiered stack within a first block of a dual-block structure. A second series of stadiums is defined in the tiered stack within a second block of the dual-block structure. The first and second series of stadiums are substantially symmetrically structured about a trench at a center of the dual-block structure. The trench extends a width of the first and second series of stadiums. The stadiums of the first and second series of stadiums have opposing staircase structures comprising steps at ends of the conductive structures of the tiered stack. Conductive source/drain contact structures are in the stack and extend substantially vertically from a source/drain region at a floor of the trench. Additional microelectronic devices are also disclosed, as are methods of fabrication and electronic systems.
Abstract:
Methods, apparatuses, and systems related to selectively depositing a liner material on a sidewall of an opening are described. An example method includes forming a liner material on a dielectric material of sidewalls of an opening and a bottom surface of an opening and removing the first liner material of the sidewalls of the opening and the bottom surface of the opening using a non-selective etch chemistry. The example method further includes forming a second liner material on the dielectric material of the sidewalls of the opening to avoid contact with the bottom surface of the opening.
Abstract:
A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices. The conductive straps include the conductive material and individually are electrically coupled to a plurality of the vertical circuit devices in the array region. Other implementations are disclosed.
Abstract:
A microelectronic device includes a memory array region, a control logic region overlying the memory array region, and a pad region overlying the control logic region. The memory array region includes a stack structure including vertically alternating conductive structures and insulating structures; vertically extending strings of memory cells within the stack structure; at least one source structure vertically underlying the stack structure and coupled to the vertically extending strings of memory cells; and digit line structures vertically overlying the stack structure and coupled to the vertically extending strings of memory cells. The control logic region includes control logic devices configured to effectuate control operations for the vertically extending strings of memory cells. The pad region includes conductive pad structures coupled to the control logic devices. Memory devices and electronic systems are also described.
Abstract:
Some embodiments include an integrated assembly having a pair of adjacent memory-block-regions, and having a separator structure between the adjacent memory-block-regions. The memory-block-regions include a first stack of alternating conductive levels and first insulative levels. The separator structure includes a second stack of alternating second and third insulative levels. The second insulative levels are substantially horizontally aligned with the conductive levels, and the third insulative levels are substantially horizontally aligned with the first insulative levels. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include an integrated assembly having a pair of adjacent memory-block-regions, and having a separator structure between the adjacent memory-block-regions. The memory-block-regions include a first stack of alternating conductive levels and first insulative levels. The separator structure includes a second stack of alternating second and third insulative levels. The second insulative levels are substantially horizontally aligned with the conductive levels, and the third insulative levels are substantially horizontally aligned with the first insulative levels. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include memory arrays. The memory arrays may have digit lines under vertically-oriented transistors, with the digit lines interconnecting transistors along columns of the array. Each individual transistor may be directly over only a single digit line, with the single digit line being entirely composed of one or more metal-containing materials. The digit lines can be over a deck, and electrically insulative regions can be directly between the digit lines and the deck. Some embodiments include methods of forming memory arrays. A plurality of linear segments of silicon-containing material may be formed to extend upwardly from a base of the silicon-containing material. The base may be etched to form silicon-containing footings under the linear segments, and the footings may be converted into metal silicide. The linear segments may be patterned into a plurality of vertically-oriented transistor pedestals that extend upwardly from the metal silicide footings.
Abstract:
A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices. The conductive straps include the conductive material and individually are electrically coupled to a plurality of the vertical circuit devices in the array region. Other implementations are disclosed.