Abstract:
A semiconductor chip includes a first wireless communication circuit, a second wireless communication circuit, and an auxiliary path. The first wireless communication circuit includes a signal path, wherein the signal path includes a signal node. The second wireless communication circuit includes a mixer and a local oscillator (LO) buffer. The LO buffer is arranged to receive and buffer an LO signal, and is further arranged to provide the LO signal to the mixer. The auxiliary path is arranged to electrically connect the LO buffer to the signal node of the signal path, wherein the LO buffer is reused for a loop-back test function of the first wireless communication circuit through the auxiliary path.
Abstract:
A semiconductor package includes a first substrate, a first layer structure, a second layer structure, a first antenna layer and an electronic component. The first antenna layer is formed on at least one of the first layer structure and the second layer structure, wherein the first antenna layer has an upper surface flush with a layer upper surface of the first layer structure or the second layer structure. The electronic component is disposed on a substrate lower surface of the first substrate and exposed from the first substrate. The first layer structure is formed between the first substrate and the second layer structure.
Abstract:
Methods and apparatuses pertaining to automotive parking assistance using radar sensors are described. A processor controls a plurality of radar sensors to transmit radio frequency (RF) signals and receive reflected signals reflected by an object such that each of the radar sensors individually transmits a respective RF signal and receive a respective reflected signal reflected by the object. The processor or the radar sensor detects one or more aspects of the object based on the respective reflected signals received by the plurality of radar sensors.
Abstract:
Methods and apparatuses pertaining to radar interference mitigation are described. A processor associated with an apparatus may generate a plurality of wave frames such that one or more aspects of the plurality of wave frames vary from one wave frame to another wave frame of the plurality of wave frames. Each of the plurality of wave frames may respectively include a plurality of chirps. A wireless transmitter associated with the apparatus may transmit the plurality of wave frames. A wireless receiver associated with the apparatus may receive one or more reflected waves comprising at least a portion of one or more of the wave frames reflected by an object. The processor may determine a distance between the object and the apparatus, a speed of the objet, or both, based on an analysis of the one or more reflected waves.
Abstract:
Described in embodiments herein are techniques for realizing filters having a variety of frequency responses, such as multiple pass-bands, high out-of-band rejection, without complicated designs. In accordance with an embodiment, a feedforward filter includes a first path, at least one second path and a signal combiner. The first path has a first translational filter, and employed for providing a first frequency response and generating a first output in response to an input signal based on the first frequency response. The at least one second path has a second translational filter and is coupled to the first path. The at least one second path is employed for providing a second frequency response that is different from the first frequency response to the input signal, and generating at least one second output in response to the input signal based on the second frequency response. The signal combiner is coupled to the first path and the second path, and employed for combining the first output and the at least one second output to generate a filtered signal.
Abstract:
A harmonic-rejection translational filter includes: a first path, a second path and a signal combiner. The first path has a first translational filter that is driven by a plurality of first oscillation signals, and is arranged to generate a first output signal according to an input signal. The second path has a second translation filter that is driven by a plurality of second oscillation signals that are different from the first oscillation signals in phase. The second path is coupled to the first path and arranged to generate a second output signal according to the input signal. The signal combiner is coupled to the first path and the second path, and arranged to combine the first output signal and the second output signal to SIN generate a filtered signal.
Abstract:
A transmitter circuit includes a frequency generation circuit configured to generate a local oscillator signal and a digital modulator configured to: receive data to be transmitted; quadrature modulate the received data to at least a first, Q, modulated value and a second, I, modulated value; examine the quadrature modulated data to determine if the first, Q, modulated value exceeds a limit, and in response thereto selectively modify the quadrature modulated values to a first modified, Q′, modulated value and a second modified, I′, modulated value thereby bringing only a value of the first modified, Q′, modulated value to within the limit. A local oscillator phase is selected in order to map the first modified, Q′, modulated value and second modified, I′, modulated value to desired quadrature values. A digital power amplifier, DPA, coupled to the digital quadrature modulator, is configured to amplify the quadrature modified modulated data.
Abstract:
A system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock, and includes an active oscillator that generates the reference clock. The active oscillator includes at least one active component. The RX circuit generates a processed RX signal by processing an RX input signal according to the LO signal. The calibration circuit checks a signal characteristic of the processed RX signal by detecting if a calibration tone exists within a receiver bandwidth, set a frequency calibration control output in response to the calibration tone being not found in the receiver bandwidth, and output the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
A wireless system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock. The LO signal generation circuit includes an active oscillator. The active oscillator generates the reference clock, wherein the active oscillator includes at least one active component, and does not include an electromechanical resonator. The RX circuit generates a down-converted RX signal by performing down-conversion upon an RX input signal according to the LO signal. The calibration circuit generates a frequency calibration control output according to a signal characteristic of the down-converted RX signal, and outputs the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
Abstract:
Methods and apparatuses pertaining to radar interference mitigation are described. A processor associated with an apparatus may generate a plurality of wave frames such that one or more aspects of the plurality of wave frames vary from one wave frame to another wave frame of the plurality of wave frames. Each of the plurality of wave frames may respectively include a plurality of chirps. A wireless transmitter associated with the apparatus may transmit the plurality of wave frames. A wireless receiver associated with the apparatus may receive one or more reflected waves comprising at least a portion of one or more of the wave frames reflected by an object. The processor may determine a distance between the object and the apparatus, a speed of the objet, or both, based on an analysis of the one or more reflected waves.