摘要:
An implantable cardiac device and method provides for monitoring a progression or regression in heart disease during an extended time period. A sensor generates an electrogram signal representing electrical activity of a patient's heart. From the generated electrogram signal, a processor determines morphology measurements wherein the morphology measurements indicate a progression or regression in the heart disease. The morphology measurements are stored in a memory during the extended period of time. A telemetry circuit transmits the stored morphology measurements to an external receiver for retrieval or display. The morphology measurements may be of electrogram intrinsic activity or evoked response activity characteristics.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
The present invention provides a power assisted cover actuator for operating a tonneau cover for an open bed of a truck, such as a pickup truck. A common truck bed cover includes, but is not limited to, a fiberglass panel that overlies the truck bed. The cover is typically hingably coupled to a distal end of the truck bed adjacent the truck cab. The power assisted cover actuator in accordance with an embodiment of the present invention comprises a linear track upon which a trolley is guided. One end of an actuator arm is pivotally coupled to the trolley. The power assisted cover actuator is secured to the inside surface of a side wall of the truck bed proximal to the opening end of the cover and distal to the hinge coupling. The linear track is positioned at an angle to the horizontal extending in an upward direction towards the hinged coupling. The other end of the actuator arm is pivotally coupled to the inside of the cover. A drive means for translating the trolley along the linear track is provided. The drive means advances the trolley along the linear track from a lower position to a higher position which raises the arm to push the cover open. Reversing the direction of travel of the trolley from a higher position to a lower position lowers the arm and closes the cover.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
摘要:
The invention is related to methods of sizing an area around the pulmonary veins along an epicardial surface. A sizing element is provided which has a plurality of indicators along its length which is used to size an area around the pulmonary veins. A sizing element is wrapped around the pulmonary veins along an epicardial location. The size of an ablating device is determined by using the indicators on the sizing element. An ablating device is then selected based on this measurement. The ablating device is then attached to the sizing element. The ablating device is then wrapped around the pulmonary veins while manipulating the sizing element.