Abstract:
An integrated circuit which can be switched to a resting state and can be returned from the resting state rapidly is provided. An integrated circuit whose power consumption can be reduced without the decrease in operation speed is provided. A method for driving the integrated circuit is provided. The integrated circuit includes a first flip-flop and a second flip-flop including a nonvolatile memory circuit. In an operating state in which power is supplied, the first flip-flop retains data. In a resting state in which supply of power is stopped, the second flip-flop retains data. On transition from the operating state into the resting state, the data is transferred from the first flip-flop to the second flip-flop. On return from the resting state to the operating state, the data is transferred from the second flip-flop to the first flip-flop.
Abstract:
A signal processing circuit whose power consumption can be suppressed is provided. In a period during which a power supply voltage is not supplied to a storage element, data stored in a first storage circuit corresponding to a nonvolatile memory can be held by a first capacitor provided in a second storage circuit. With the use of a transistor in which a channel is formed in an oxide semiconductor layer, a signal held in the first capacitor is held for a long time. The storage element can accordingly hold the stored content (data) also in a period during which the supply of the power supply voltage is stopped. A signal held by the first capacitor can be converted into the one corresponding to the state (the on state or off state) of the second transistor and read from the second storage circuit. Consequently, an original signal can be accurately read.
Abstract:
An integrated circuit which can be switched to a resting state and can be returned from the resting state rapidly is provided. An integrated circuit whose power consumption can be reduced without the decrease in operation speed is provided. A method for driving the integrated circuit is provided. The integrated circuit includes a first flip-flop and a second flip-flop including a nonvolatile memory circuit. In an operating state in which power is supplied, the first flip-flop retains data. In a resting state in which supply of power is stopped, the second flip-flop retains data. On transition from the operating state into the resting state, the data is transferred from the first flip-flop to the second flip-flop. On return from the resting state to the operating state, the data is transferred from the second flip-flop to the first flip-flop.
Abstract:
A signal processing circuit whose power consumption can be suppressed is provided. In a period during which a power supply voltage is not supplied to a storage element, data stored in a first storage circuit corresponding to a nonvolatile memory can be held by a first capacitor provided in a second storage circuit. With the use of a transistor in which a channel is formed in an oxide semiconductor layer, a signal held in the first capacitor is held for a long time. The storage element can accordingly hold the stored content (data) also in a period during which the supply of the power supply voltage is stopped. A signal held by the first capacitor can be converted into the one corresponding to the state (the on state or off state) of the second transistor and read from the second storage circuit. Consequently, an original signal can be accurately read.
Abstract:
An object is to provide an image processing circuit adaptable to displays having a variety of pixel numbers. The image processing circuit includes a data adjustment circuit, a first line memory and a second line memory capable of storing K pieces of data, an output timing control circuit, and an arithmetic circuit. To the data adjustment circuit, (X×Y) pieces of pixel data are input. Y pieces of pixel data are transmitted to the first line memory. When Y is less than K, (K−Y) pieces of dummy data are added to fill the first line memory. Then, the K pieces of data are output from the first line memory to the second line memory and a new set of K data is input to the first line memory. The arithmetic circuit stores the data input from the line memories and performs filtering.
Abstract:
In a case where an ASK method is used for a communication method between a semiconductor device and a reader/writer, the amplitude of a radio signal is changed by data transmitted from the semiconductor device to the reader/writer when data is not transmitted from the reader/writer to the semiconductor device. Therefore, in some cases, the semiconductor device mistakes data transmitted from the semiconductor device itself for data transmitted from the reader/writer to the semiconductor device. The semiconductor device includes an antenna circuit, a transmission circuit, a reception circuit, and an arithmetic processing circuit. The antenna circuit transmits and receives a radio signal. The transmission circuit outputs to the reception circuit a signal showing whether or not the antenna circuit is transmitting the radio signal.
Abstract:
An object is to provide a programmable logic device configured to keep a connection state of logic circuits even while power supply voltage is stopped. The programmable logic device includes arithmetic circuits each of whose logic state can be changed; a configuration changing circuit changing the logic states of the arithmetic circuits; a power supply control circuit controlling supply of power supply voltage to the arithmetic circuits; a state memory circuit storing data on the logic states and data on states of the power supply voltage of the arithmetic circuits; and an arithmetic state control circuit controlling the configuration changing circuit and the power supply control circuit in accordance with the data stored in the state memory circuit. A transistor in which a channel formation region is formed in an oxide semiconductor layer is provided between the configuration changing circuit and each of the arithmetic circuits.
Abstract:
A memory device according to the invention can be operated with a single potential, by which the use of a voltage converter can be excluded, leading to the reduction of power consumption. Such an operation can be achieved by utilizing capacitive coupling of a capacitor connected to a gate of a transistor for data writing. That is, the capacitive coupling is induced by inputting a signal, which is supplied by a delay circuit configured to delay a write signal having a potential equal to the power supply potential, to the capacitor. Increase in the potential of the gate by the capacitive coupling allows the transistor to be turned on in association with the power supply potential applied to the gate from a power supply. Data is written by inputting a signal having a potential equal to the power supply potential or a grounded potential to a node through the transistor.
Abstract:
A semiconductor device such as an RFID, which can easily generate a given stable potential, is provided. Circuits included in a semiconductor device are categorized depending on whether a given stable power source potential is necessary. A power source potential generated from a wireless signal received by an antenna with the use of the antenna and a rectifier circuit is supplied to a circuit which needs a given stable power source potential through a regulator. On the other hand, a power source potential generated by the rectifier circuit is supplied to a circuit other than the circuit which needs the arbitrary power source potential. Thus, a semiconductor device including a regulator circuit easily designed with a smaller layout can be provided, and the semiconductor device can easily generate a given stable power source potential.
Abstract:
An object is to realize downsizing and cost reduction of a display device by efficiently using a physical region of a memory in a control circuit of the display device. A structure of a video data storage portion of the control circuit is that provided with a video data storage portion for storing video data of an n-th frame (n is a natural number), a video data storage portion for storing video data of an (n+1)th frame, and a video data storage portion for sharing video data of the n-th frame and the (n+1)th frame among received video data.