Abstract:
A semiconductor device in which MRAM is formed in a wiring layer A contained in a multilayered wiring layer, the MRAM having at least two first magnetization pinning layers in contact with a first wiring formed in a wiring layer and insulated from each other, a free magnetization layer overlapping the two first magnetization pinning layers in a plan view, and connected with the first magnetization pinning layers, a non-magnetic layer situated over the free magnetization layer, and a second magnetization pinning layer situated over the non-magnetic layer.
Abstract:
The semiconductor device includes an insulating film that is formed using a cyclic siloxane having a six-membered ring structure as a raw material; a trench that is formed in the insulating film; and a interconnect that is configured by a metal film embedded in the trench. In the semiconductor device, a modified layer is formed on a bottom surface of the trench, in which the number of carbon atoms and/or the number of nitrogen atoms per unit volume is larger than that inside the insulating film.
Abstract:
In an insulating film structure having a barrier insulating film, a via interlayer insulating film, a wiring interlayer insulating film, and a hard mask film stacked in this order on an underlayer wiring, a via hole pattern is formed in the insulating film structure, then a groove pattern is formed in the hard mask film, and a grove is formed in the insulating film structure using this as a mask. According to the prior art, the via side wall is oxidized equally severely in the both processes. The trench side wall is oxidized severely in the via first process according to the prior art, whereas, according to the present invention, the oxidation thereof is suppressed to such an extent that an almost non-oxidized state can be created.
Abstract:
A wiring metal contains a polycrystal of copper (Cu) as a primary element and an additional element other than Cu, and concentration of the additional element is, at crystal grain boundaries composing the Cu polycrystal and in vicinities of the crystal grain boundaries, higher than that of the inside of the crystal grains. The additional element is preferably at least one element selected from a group consisting of Ti, Zr, Hf, Cr, Co, Al, Sn, Ni, Mg, and Ag. This Cu wiring is formed by forming a Cu polycrystalline film, forming an additional element layer on this Cu film, and diffusing this additional element from the additional element layer into the Cu film. This copper alloy for wiring is preferred as metal wiring formed for a semiconductor device.
Abstract:
Provided is a semiconductor device, which includes an interlayer insulating film formed on a semiconductor substrate, a wiring layer filled in a recess formed in the interlayer insulating film, and a cap insulating film. The interlayer insulating film includes a first SiOCH film and a surface modification layer including an SiOCH film formed by modifying a surface layer of the first SiOCH film, the SiOCH film having a lower carbon concentration and a higher oxygen concentration than the first SiOCH film has. The cap insulating film contacts with surfaces of the metal wiring and the surface modification layer.
Abstract:
A wiring metal contains a polycrystal of copper (Cu) as a primary element and an additional element other than Cu, and concentration of the additional element is, at crystal grain boundaries composing the Cu polycrystal and in vicinities of the crystal grain boundaries, higher than that of the inside of the crystal grains. The additional element is preferably at least one element selected from a group consisting of Ti, Zr, Hf, Cr, Co, Al, Sn, Ni, Mg, and Ag. This Cu wiring is formed by forming a Cu polycrystalline film, forming an additional element layer on this Cu film, and diffusing this additional element from the additional element layer into the Cu film. This copper alloy for wiring is preferred as metal wiring formed for a semiconductor device.