Eyewear-mountable eye tracking device
    2.
    发明授权
    Eyewear-mountable eye tracking device 有权
    眼镜安装眼睛追踪装置

    公开(公告)号:US09568603B2

    公开(公告)日:2017-02-14

    申请号:US14610984

    申请日:2015-01-30

    Abstract: An eye movement tracking device that can be mounted to standard eyeglasses as disclosed. The device comprises an illumination source, a time-of-flight (TOF) camera and a processor. The source transmits energy within a frequency band from a location proximate to an eye of a person, such that at least a first portion of the transmitted energy is reflected off a lens of eyewear worn by the person to subsequently reflect off the eye, and such that at least a second portion of the transmitted energy is transmitted through the lens to reflect off objects in the person's environment. The TOF camera detects reflections of at least the first portion of the transmitted energy, and distinguishes them from other energy detected by the TOF camera in said frequency band, based on TOF principles. The processor uses the detected reflections of the first portion of the transmitted energy to determine eye position.

    Abstract translation: 如所公开的,可以安装到标准眼镜上的眼睛运动跟踪装置。 该装置包括照明源,飞行时间(TOF)照相机和处理器。 源从位于人眼附近的位置的频带内传送能量,使得所传送的能量的至少第一部分被从人佩戴的眼镜的镜片反射出来,随后反射出眼睛。 透射能量的至少第二部分透过透镜以反射人的环境中的物体。 TOF摄像机根据TOF原理检测至少第一部分发射能量的反射,并将它们与TOF相机在所述频带中检测到的其他能量进行区分。 处理器使用检测到的透射能量的第一部分的反射来确定眼睛位置。

    Eyewear-mountable eye tracking device

    公开(公告)号:US10969862B2

    公开(公告)日:2021-04-06

    申请号:US15399657

    申请日:2017-01-05

    Abstract: An eye movement tracking device that can be mounted to standard eyeglasses as disclosed. The device comprises an illumination source, a time-of-flight (TOF) camera and a processor. The source transmits energy within a frequency band from a location proximate to an eye of a person, such that at least a first portion of the transmitted energy is reflected off a lens of eyewear worn by the person to subsequently reflect off the eye, and such that at least a second portion of the transmitted energy is transmitted through the lens to reflect off objects in the person's environment. The TOF camera detects reflections of at least the first portion of the transmitted energy, and distinguishes them from other energy detected by the TOF camera in said frequency band, based on TOF principles. The processor uses the detected reflections of the first portion of the transmitted energy to determine eye position.

    Alignable user interface
    6.
    发明授权

    公开(公告)号:US09846522B2

    公开(公告)日:2017-12-19

    申请号:US14338768

    申请日:2014-07-23

    Abstract: Embodiments are disclosed that relate to interacting with a graphical user interface in a manner to facilitate hands-free operation. For example, one disclosed embodiment provides a method including outputting to a display device a user interface that displays graphical representations of a plurality of alignable user interface objects, each alignable user interface object representing a selectable object. The method further includes receiving depth data from an imaging device, the image data capturing an image of a face directed toward the display device. The method further comprises changing an alignment condition of a first user interface object of the plurality of alignable user interface objects to move the first user interface object into an aligned condition, and changing an alignment condition of a second user interface object to move the second user interface object out of an aligned condition based on the received image data.

Patent Agency Ranking