Abstract:
A method for fabricating a MEMS device comprises providing a substrate having a back side, a front side opposite to the back side and a periphery portion. A desired microstructure is formed on the back side of the substrate. The substrate is then supported for rotation. A precursor solution is deposited on the front side of the substrate during rotation so that a thin film layer may be formed thereon. During formation of the thin film layer, the substrate is supported and rotated that the microstructure formed on the back side is protected.
Abstract:
A method for fabricating a MEMS device comprises providing a substrate having a back side, a front side opposite to the back side and a periphery portion. A desired microstructure is formed on the back side of the substrate. The substrate is then supported for rotation. A precursor solution is deposited on the front side of the substrate during rotation so that a thin film layer may be formed thereon. During formation of the thin film layer, the substrate is supported and rotated that the microstructure formed on the back side is protected.
Abstract:
An electromechanical device includes a support structure formed by attaching inner surfaces of second and third substrates to a first substrate. The support structure includes at least one cavity between the second and third layers. An electromechanical active element is provided on an outer surface of at least one of the second or third layers.
Abstract:
A method for fabricating a MEMS device comprises providing a substrate having a back side, a front side opposite to the back side and a periphery portion. A desired microstructure is formed on the back side of the substrate. The substrate is then supported for rotation. A precursor solution is deposited on the front side of the substrate during rotation so that a thin film layer may be formed thereon. During formation of the thin film layer, the substrate is supported and rotated that the microstructure formed on the back side is protected.
Abstract:
An electromechanical device includes a support structure formed by attaching inner surfaces of second and third substrates to a first substrate. The support structure includes at least one cavity between the second and third layers. An electromechanical active element is provided on an outer surface of at least one of the second or third layers.
Abstract:
An electromechanical device includes a support structure formed by attaching inner surfaces of second and third substrates to a first substrate. The support structure includes at least one cavity between the second and third layers. An electromechanical active element is provided on an outer surface of at least one of the second or third layers.
Abstract:
A method for fabricating a MEMS device comprises providing a substrate having a back side, a front side opposite to the back side and a periphery portion. A desired microstructure is formed on the back side of the substrate. The substrate is then supported for rotation. A precursor solution is deposited on the front side of the substrate during rotation so that a thin film layer may be formed thereon. During formation of the thin film layer, the substrate is supported and rotated that the microstructure formed on the back side is protected.
Abstract:
A method includes determining motion imitation information for causing a system to imitate a physical task using a first machine learning model that is trained using motion information that represents a performance of the physical task, determining a predicted correction based on the motion information and a current state from the system using a second machine learning model that is trained using the motion information, determining an action to be performed by the system based on the motion imitation information and the predicted correction; and controlling motion of the system in accordance with the action.
Abstract:
The present invention comprises an arrangement and process for the fluxless manufacture of an integrated circuit component, comprising the steps of loading a solder ball and chip arrangement, solder ball side up or down, onto a first or a second donor chuck respectively; monitoring the solder ball and chip arrangement by a computer-controlled camera; removing the solder ball and chip arrangement from the donor chuck by a computer-controlled gripper mechanism; moving the solder ball and chip arrangement via the gripper mechanism onto a computer-controlled gang carrier, the monitored by a second computer controlled camera; flipping the gang carrier about a horizontal axis so as to arrange the solder ball and chip arrangement into an inverted, solder ball side down orientation over a receiver chuck substrate, monitored and positionally controlled by a third computer-controlled camera; and compressing the solder ball side down solder ball and chip arrangement onto the receiver chuck substrate by a computer-controlled compression rod so as to bond the solder ball side down solder ball and chip arrangement onto the receiver chuck substrate so as to form an integrated circuit assembly.