Abstract:
The miniaturized piezoelectric accelerometer includes a support frame (102) having a cavity (104) and a seismic mass (108) supported by a plurality of suspension beams (110) extending from the support frame (102). Each of the suspension beams (110) has a piezoelectric thin film coated on a top surface thereof, with a pair of inter-digital electrodes (114) deposited on an upper surface of each piezoelectric thin film. The presence of acceleration excites bending and thus strain in the piezoelectric thin film, which in turn causes electrical signals to be generated over terminals of the electrodes (114). To collect constructively the output of the electrodes (114), one terminal of each of the electrodes (114) is routed to and electrically connected at a top surface (308) of the seismic mass (108).
Abstract:
A photovoltaic UV detector configured to generate an electrical output under UV irradiation. The photovoltaic UV detector comprises a first layer comprising an electrically polarized dielectric thin layer configured to generate a first electrical output under the UV irradiation; and a second, layer configured to form an electrical energy barrier at an interface between the second layer and the first layer so as to generate a second electrical output under the UV irradiation, the second electrical output having a same polarity as the first electrical output, the electrical output of the photovoltaic UV detector being a sum of at least the first electrical output and the second electrical output. The electrically polarized dielectric thin layer may be a ferroelectric thin film, which may comprise PZT or PZLT. The second layer may be a metal and the electrical energy barrier may be a Schottky barrier.
Abstract:
The present invention provides a thin film photovoltaic device and a method of forming a thin film photovoltaic device. The thin film photovoltaic device has a substrate, a thin film layer formed on the substrate and first and second electrodes formed on one side of the thin film layer. By applying an electric field over the first and second electrodes, the thin film layer is polarized in a direction parallel to the surface plane of the film. Upon exposure to light, the thin film layer converts light energy into electricity. According to the method, a thin film layer is formed on a substrate. A first electrode and a second electrode are formed on one side of the thin film layer. By applying an electric field over the first and second electrodes, the thin film layer is polarized in a direction parallel to the surface plane of the film.
Abstract:
A method of producing a piezoelectric ceramic thick film on a substrate, said method comprising: providing a piezoelectric ceramic material in powder form; forming a liquid mixture by mixing the powdered material with a liquid phase precursor of a metal oxide of low-melting point, said precursor being adapted to decompose, upon subsequent annealing, into the metal oxide; drying the liquid mixture to form a precipitate; milling the precipitate to form a powdered precipitate; adding an organic carrier to the powdered precipitate; further milling the precipitate to form a paste; depositing a layer of the paste, as a wet film, onto the substrate; and annealing the layered substrate at a temperature and for a time sufficient to cause transformation of the paste into the thick film.
Abstract:
Ferroelectric Poly(vinylidene fluoride) Film on a Substrate and Method for its Formation A method of producing a poly(vinylidene fluoride) (“PVDF”) film on a substrate from a precursor solution is disclosed. The method comprises preparing the precursor solution for the PVDF film and dissolving an additive in the precursor solution, the additive being selected from the group consisting of: a hydrate salt, and a hygroscopic chemical. The PVDF is added to the precursor solution. The PVDF solution is coated on a substrate to form an as-deposited PVDF film which is dried and crystallized at an elevated temperature. The dried and crystallized as-deposited PVDF film is annealed at a further elevated temperature. The further elevated temperature is greater than the elevated temperature but less than a melting point of the as-deposited PVDF film. The additive dehydrates at the further elevated temperature. A corresponding product is also disclosed.
Abstract:
A method for fabricating a MEMS device comprises providing a substrate having a back side, a front side opposite to the back side and a periphery portion. A desired microstructure is formed on the back side of the substrate. The substrate is then supported for rotation. A precursor solution is deposited on the front side of the substrate during rotation so that a thin film layer may be formed thereon. During formation of the thin film layer, the substrate is supported and rotated that the microstructure formed on the back side is protected.
Abstract:
A power supply device and system have an electrically polarized element in which a remnant electrical polarization is formed and retained. Electrodes are formed on the electrically polarized elements and the remnant electrical polarization generates an electrical potential on the electrodes. Electrical circuits are coupled to the electrically polarized element to control the external electric charges attracted and distributed on the electrodes, for establishing the electrical potential on the electrodes. The electrodes can output electric currents by controlling the external electric charges distribution. The electrically polarized element may be made of ferroelectric material, including a ferroelectric bulk ceramic, ferroelectric multilayer ceramic, ferroelectric single crystal, ferroelectric thin film, ferroelectric thick film and ferroelectric polymer, and all the other materials with electric polarization retained therein. Power supply devices and systems made according to the present invention have very long standby time, small in size and efficient for many applications including RF systems.
Abstract:
The present invention provides a thin film photovoltaic device and a method of forming a thin film photovoltaic device. The thin film photovoltaic device has a substrate, a thin film layer formed on the substrate and first and second electrodes formed on one side of the thin film layer. By applying an electric field over the first and second electrodes, the thin film layer is polarized in a direction parallel to the surface plane of the film. Upon exposure to light, the thin film layer converts light energy into electricity. According to the method, a thin film layer is formed on a substrate. A first electrode and a second electrode are formed on one side of the thin film layer. By applying an electric field over the first and second electrodes, the thin film layer is polarized in a direction parallel to the surface plane of the film.
Abstract:
The present invention provides new ferroelectric ceramic materials which can be sintered at a temperature lower than that of the conventional ferroelectric ceramic materials and upon sintering, devices formed of the new ferroelectric ceramic materials possesses excellent piezoelectric properties which are suitable for many industrial applications. The ferroelectric ceramic material includes a composition with a general formula of wPb(Ni1/3Nb2/3)O3−xPb(Zn1/3Nb2/3)O3−yPb(Mg1/3Nb2/3)O3−zPbZrO3−(1−w−x−y−z)PbTiO3, in which 0
Abstract translation:本发明提供新的铁电陶瓷材料,其可以在比常规铁电陶瓷材料低的温度下烧结,并且在烧结时,由新的铁电陶瓷材料形成的器件具有优异的压电性能,其适用于许多工业应用。 铁电陶瓷材料包括具有通式wPb(Ni 1/3 N 2 Nb 3/3)O 3 -xPb(Zn 3 / 3Nb 2/3 3)O 3 -yPb(Mg 1/3 Nb 2) 其中0 3 u> 0
Abstract:
An electromechanical device includes a support structure formed by attaching inner surfaces of second and third substrates to a first substrate. The support structure includes at least one cavity between the second and third layers. An electromechanical active element is provided on an outer surface of at least one of the second or third layers.