Abstract:
The present invention relates to a 3D printer polymer filament improving strength of a polymer resin and providing durability by using graphene coated metal nanoparticles and carbon nanotubes, and expressing a function of the graphene coated metal nanoparticles and the carbon nanotubes as a filler, and a manufacturing method thereof.Accordingly, according to the present invention, the 3D printer polymer filament and the manufacturing method includes mixing the graphene coated metal nanoparticles, the carbon nanotubes, and the polymer, using the manufactured mixture to form a filament through extrusion, and forming a 3D printed article by using the filament, thereby improving the strength and the durability by using the graphene coated metal nanoparticles and the carbon nanotubes.
Abstract:
A method to prepare polymer woven fabric surface with selective oleophilicity or hydrophobicity and oil-oil separation and oil-water separation filter prepared by using the surface. The method to prepare the surface with selective oleophilicity or hydrophobicity includes steps comprising a step to form nano meter sized pores on the surface of the polymer woven fabric surface with micro sized pores through drying type etching; and a step to form selective oleophobic or hydrophobic film on the nano meter sized pores. It is possible to control hydrophobic/oleophobic property according to pore size, material or thickness of the film and this polymer surface with hybrid pores can be used in various areas such as an oil filter for car capable of selective separation of oil-oil mixture and water-oil mixture, disposal of waste oil, treatment of marine oil leakage, and pretreatment of crude oil refinement.
Abstract:
A method for fabricating a hydrophilic aluminum surface includes: an activation step of preparing doped aluminum having an activated surface through doping treatment on a part or whole of an aluminum surface with applying reactive gas thereto; and a structure forming step of preparing a hydrophilic aluminum surface through oxidizing treatment on the doped aluminum to have nano-patterns comprising nano-protrusion structures on the aluminum surface. Hydrophobic aluminum can be fabricated into artificially hydrophilic or super-hydrophilic aluminum, and the hydrophilic aluminum surface body that does not have an aging effect and has long-lasting hydrophilicity can be provided.
Abstract:
A method to prepare low reflective surface according to an example of the present invention comprises: the first step to prepare materials having pillar structure on the surface; the second step to prepare aluminum surface-materials by treating for the pillar structure to have aluminum surface; and the third step to prepare a low reflective surface with dual protuberance structure by forming nano-flake layer on the pillar surface of the material surface through oxidation of the surface aluminum of the aluminum surface-materials. The method to prepare low reflective surface can provide a low reflective surface structure that can be applied to photovoltaic device surface or various display surface as a surface able to reduce reflection significantly by absorbing wavelengths in the range of visible and infrared ray through internally total reflection with simple, low cost, and ecofriendly process.
Abstract:
An oil fence including an oil filtration membrane includes: a floating member floating on a surface of water; and an oil filtration membrane connected to the floating member, allowing the water to pass therethrough, and rapidly collecting materials such as oil or a hazardous and noxious substance included in the water.
Abstract:
The present invention relates to a glass having a surface with improved water-repellency or hydrophobicity and low reflectance, and a fabrication method thereof. A technology is employed, in which a thin film containing silicon or silicon oxide is formed on the glass surface, the nano-structures are formed by selective etching treatment using a reactive gas such as CF4 or the like to provide superhydrophobicity and low reflectance properties, and a material with low surface energy is coated onto the nano-structures. The fabrication method of the low-reflective and superhydrophobic or super water-repellent glass may execute deposition and etching processes for the glass having the superhydrophobicity and the low reflectance, and provide excellent superhydrophobicity and low reflectance to the surface of the glass which was difficult to be treated. Also, the method is sustainable due to non-use of a toxic etching solution during these processes. The superhydrophobic and low-reflective glass can be applied to various fields, such as high-tech smart devices, vehicles, home appliances and so forth.
Abstract:
A super-hydrophobic fiber of the present disclosure includes: a nano-needle fiber having a surface including needle-shaped nano structures; and a coating layer disposed on the surface including the nano structures, and containing a hydrophobic material. The fiber has no aging effect, and thus, is excellent in durability, and has such a large contact angle and such as small sliding angle that the fiber may not be wet with water. A method for fabricating the super-hydrophobic fiber includes: a preparation step of preparing a pre-treating fiber; an etching step of etching a surface and an inner portion of the pre-treating fiber to fabricate a nano-needle fiber having a surface on which needle-shaped nano structures are formed; and a coating step of forming a coating layer containing a hydrophobic material, and enables mass production and is performed by simple processes.Further, an article including the super-hydrophobic fiber is an article in which no liquid drop is absorbed, scarcely adsorbs a contaminant, needs not be dried, and thus, may be widely applied even to recreational articles.