摘要:
A metal wire for inspection and an electrode for inspection are formed on a region of a semiconductor substrate where a metal wire and an electrode for external connection are not formed. The metal wire for inspection and the electrode for inspection electrically detect an open failure, a short-circuit failure and a leakage failure of the metal wire and a connection failure between an element electrode and the metal wire. A semiconductor wafer is subjected to an electrical test, so that it is possible to detect the aforementioned failures with good accuracy during a manufacturing process.
摘要:
A metal wire for inspection and an electrode for inspection are formed on a region of a semiconductor substrate where a metal wire and an electrode for external connection are not formed. The metal wire for inspection and the electrode for inspection electrically detect an open failure, a short-circuit failure and a leakage failure of the metal wire and a connection failure between an element electrode and the metal wire. A semiconductor wafer is subjected to an electrical test, so that it is possible to detect the aforementioned failures with good accuracy during a manufacturing process.
摘要:
A first mark formed simultaneously with the process step for forming a layer of metal interconnects is partly exposed at two parallel side surfaces of the separated semiconductor device or one side surface thereof to have a rectangular shape. This allows the identification of the orientation and product information of the semiconductor device in a small semiconductor device.
摘要:
Disclosed is a semiconductor device 10 comprising a first semiconductor element 11 with an arrangement of first element electrodes 12, a second semiconductor element 13 with an arrangement of second element electrodes 14, a connection member 15 electrically connecting together a portion 12b of the first element electrodes 12 and the second element electrodes 14, an insulation layer 17 covering a major surface 11a of the first semiconductor element 11 and a backside surface 13b of the second semiconductor element 13, a wiring layer 22 formed on the insulation layer 17 and electrically connected to the first element electrode portion 12b exposed in an opening portion 21, and an external electrode 23 formed, as a portion of the wiring layer 22, on the insulation layer 17.
摘要:
A process for hard tone development of a silver halide photographic light-sensitive material is described, comprising developing an imagewise exposed negative type silver halide photographic light-sensitive material in the presence of hydrazine, usig a developing solution comprising (1) a developing agent, (2) 0.25 mol/l or more of sulfite and (3) a compound represented by the general formula (I) and having a pH value of 10.5 to 12.3: ##STR1## wherein R.sub.1 and R.sub.2 represent each an alkyl group of R.sub.1 and R.sub.2 may form a ring by linking each other, R.sub.3 represents an alkyl group, an aryl group or a heterocyclic group, and R.sub.1, R.sub.2 and R.sub.3 may have substituents, A represents an alkylene group which may be substituted, and X represents --CONH--, --OCONH--, --NHCONH--, --NHCOO--, --COO--, --OCO--, --CO--, --NHCO--, --SO.sub.2 NH--, --NHSO.sub.2 --, --SO.sub.2 --or --O--.
摘要:
The concentration of halogen ions in a photographic developer is controlled at an almost constant value by determining the concentration of halogen ions in the developer by detecting the change in electric potential caused by the addition of silver ions to the solution, and controlling the electrical current supplied to a halogen ion removing means, such as an electrodialysis or an electrolysis unit having an anion exchange membrane, based on the result of the determination of halogen ions. By this method the amount of complementary developer added to a fatigued developer solution can be greatly reduced.
摘要:
A conductive region electrically connected to a buffer coat film is formed on at least one corner of a semiconductor substrate, so that electricity charged on a package seal resin or a surface of the buffer coat film is allowed to flow toward the conductive region through a conductive path. Thus, density of the electricity charged on the package seal resin or the surface of the buffer coat film is lowered, and electric discharge can be suppressed. Since the electric discharge is suppressed, no high voltage is applied to an external input/output terminal. As a result, it is possible to prevent a circuit metal wire connected to an integrated circuit from being fused and an interlayer insulating film from being damaged.
摘要:
A conductive region electrically connected to a buffer coat film is formed on at least one corner of a semiconductor substrate, so that electricity charged on a package seal resin or a surface of the buffer coat film is allowed to flow toward the conductive region through a conductive path. Thus, density of the electricity charged on the package seal resin or the surface of the buffer coat film is lowered, and electric discharge can be suppressed. Since the electric discharge is suppressed, no high voltage is applied to an external input/output terminal. As a result, it is possible to prevent a circuit metal wire connected to an integrated circuit from being fused and an interlayer insulating film from being damaged.
摘要:
A semiconductor device has a semiconductor chip, a first insulating film and an inductor. The semiconductor chip includes an integrated circuit formed on the main surface of the chip and a plurality of pad electrodes formed on the main surface of the chip and electrically connected to the integrated circuit. The first insulating film of an insulating resin material is formed on the main surface of the semiconductor chip, covers the integrated circuit, and includes a plurality of contact holes provided on the respective pad electrodes. The inductor is formed on the inductor formation region of the first insulating film, and both terminals of the inductor are connected to the pad electrodes through the contact holes, respectively. The inductor formation region of the first insulating film is formed thicker than a portion of the first insulating film around the contact hole.
摘要:
A modified layer 5 and an altered layer 8 are formed outside a dicing point of a dicing area 3. Thus without forming another interface between different physical properties on the dicing point, it is possible to prevent chipping from progressing along a crystal orientation from an interface between a semiconductor element 2 and a semiconductor substrate 1 and from a surface of the semiconductor element during dicing, thereby suppressing the development of chipping to the semiconductor element.