Abstract:
A semiconductor measuring tool has a folding mirror configuration that directs a light beam to pass the same space multiple times to reduce the size and footprint. Furthermore, the folding mirrors may reflect the light beam at less than forty-five degrees; thereby allowing for smaller folding mirrors as compared to the prior art.
Abstract:
Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.
Abstract:
A semiconductor measuring tool has a folding mirror configuration that directs a light beam to pass the same space multiple times to reduce the size and footprint. Furthermore, the folding mirrors may reflect the light beam at less than forty-five degrees; thereby allowing for smaller folding mirrors as compared to the prior art.
Abstract:
A beam shaper for an optical inspection tool includes a focal lens to focus an optical beam onto a target at an oblique angle of incidence and a phase modulator to substantially flatten a top of the optical beam in the plane of the target when the optical beam is focused onto the target at the oblique angle of incidence.
Abstract:
A beam shaper for an optical inspection tool includes a focal lens to focus an optical beam onto a target at an oblique angle of incidence and a phase modulator to substantially flatten a top of the optical beam in the plane of the target when the optical beam is focused onto the target at the oblique angle of incidence.
Abstract:
Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.