Abstract:
Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming a substoichiometric oxide over the first conductive element, forming a second conductive element over the substoichiometric oxide, and oxidizing edges of the substoichiometric oxide by subjecting the substoichiometric oxide to an oxidizing environment to define a controlled oxygen vacancy conduction path near a center of the oxide.
Abstract:
Spin torque transfer magnetic random access memory devices configured to be programmed unidirectionally and methods of programming such devices. The devices include memory cells having two pinned layers and a free layer therebetween. By utilizing two pinned layers, the spin torque effect on the free layer from each of the two pinned layers, respectively, allows the memory cells to be programmed with unidirectional currents.
Abstract:
A memory cell including magnetic materials and heating materials, and methods of programming the memory cell are provided. The memory cell includes a free region, a pinned region, and a heating region configured to generate and transfer heat to the free region when a programming current is directed to the cell. The heat transferred from the heating region increases the temperature of the free region, which decreases the magnetization and the critical switching current density of the free region. In some embodiments, the heating region may also provide a current path to the free region, and the magnetization of the free region may be switched according to the spin polarity of the programming current, programming the memory cell to a high resistance state or a low resistance state.
Abstract:
A data storage device and methods for storing and reading data are provided. The data storage device includes a data storage medium and second device. The data storage medium has an insulating layer, a first electrode layer over the insulating layer and at least one layer of resistance variable material over the first electrode layer. The second device includes a substrate and at least one conductive point configured to electrically contact the data storage medium.
Abstract:
Spin torque transfer magnetic random access memory devices configured to be programmed unidirectionally and methods of programming such devices. The devices include memory cells having two pinned layers and a free layer therebetween. By utilizing two pinned layers, the spin torque effect on the free layer from each of the two pinned layers, respectively, allows the memory cells to be programmed with unidirectional currents.
Abstract:
A data storage device and methods for storing and reading data are provided. The data storage device includes a data storage medium and second device. The data storage medium has an insulating layer, a first electrode layer over the insulating layer and at least one layer of resistance variable material over the first electrode layer. The second device includes a substrate and at least one conductive point configured to electrically contact the data storage medium.
Abstract:
A magnetic memory cell including a soft magnetic layer and a coupling layer, and methods of operating the memory cell are provided. The memory cell includes a stack with a free ferromagnetic layer and a pinned ferromagnetic layer, and a soft magnetic layer and a coupling layer may also be formed as layers in the stack. The coupling layer may cause antiferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction antiparallel to the magnetization of the soft magnetic layer, or the coupling layer may cause ferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction parallel to the magnetization of the soft magnetic layer. The coupling layer, through a coupling effect, reduces the critical switching current of the memory cell.
Abstract:
A magnetic memory cell including a piezoelectric material, and methods of operating the memory cell are provided. The memory cell includes a stack, and the piezoelectric material may be formed as a layer in the stack or adjacent the layers of the cell stack. The piezoelectric material may be used to induce a transient stress during programming of the memory cell to reduce the critical switching current of the memory cell.
Abstract:
A magnetic memory cell including a soft magnetic layer and a coupling layer, and methods of operating the memory cell are provided. The memory cell includes a stack with a free ferromagnetic layer and a pinned ferromagnetic layer, and a soft magnetic layer and a coupling layer may also be formed as layers in the stack. The coupling layer may cause antiferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction antiparallel to the magnetization of the soft magnetic layer, or the coupling layer may cause ferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction parallel to the magnetization of the soft magnetic layer. The coupling layer, through a coupling effect, reduces the critical switching current of the memory cell.
Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.