Abstract:
A process for enhancing the operability of hot gas cleanup for the production of synthesis gas in which a stream of methane rich gas is autothermally reformed at a temperature and pressure sufficient to generate a stream of synthesis gas rich in hydrogen and carbon monoxide, the synthesis gas is subjected to condensation and removing the resultant water, and sulfur impurities are removed from the resultant synthesis gas stream.
Abstract:
A process for enhancing the operability of hot gas cleanup for the production of synthesis gas in which a stream of methane rich gas is autothermally reformed at a temperature and pressure sufficient to generate a stream of synthesis gas rich in hydrogen and carbon monoxide, the synthesis gas is subjected to condensation and removing the resultant water, and sulfur impurities are removed from the resultant synthesis gas stream.
Abstract:
Provided is a process where the biomass and bisolids are hydrothermally treated under a reductive gas. Using this process a high carbon content pumpable mixture of biomass and biosolid slurry is produced with a viscosity value of less than 1.5.
Abstract:
Provided is a process where the biomass and bisolids are hydrothermally treated under a reductive gas. Using this process a high carbon content pumpable mixture of biomass and biosolid slurry is produced with a viscosity value of less than 1.5.
Abstract:
A method for controlling the synthesis gas composition obtained from a steam methane reformer (SMR) that obtains its feedstock as product gas directly from a steam hydro-gasification reactor SHR). The method allows control of the H2/CO syngas ratio by adjusting the hydrogen feed and the water content of feedstock into a steam hydro-gasification reactor that supplies the SMR. The steam and methane rich product gas of the SHR is generated by means of hydro-gasification of a slurry of carbonaceous material and water. The mass percentages of the product stream at each stage of the process are calculated using a modeling program, such as the ASPEN PLUS™ equilibrium process. By varying the parameters of solid to water ratio and hydrogen to carbon ratio, a sensitivity analysis can be performed that enables one determine the optimum composition of the slurry feedstock to the SHR to obtain a desired syngas ratio output of the SMR. Thus one can adjust the hydrogen feed and the water content of feedstock into the SHR that supplies the SMR to determine the syngas ratio output of the SMR.
Abstract translation:用于控制从蒸汽甲烷重整器(SMR)获得的合成气组合物的方法,其从蒸汽加氢气化反应器SHR直接获得其原料作为产物气体)。 该方法允许通过将原料的氢气进料和水含量调节到供应SMR的蒸汽加氢 - 气化反应器中来控制H 2 CO 2 / CO合成气比。 SHR的蒸汽和富甲烷产物气体通过碳质材料和水的浆料的加氢气化产生。 使用建模程序(如ASPEN PLUS TM平衡过程)计算过程每个阶段的产物流的质量百分比。 通过改变固 - 水比和氢碳比的参数,可以进行灵敏度分析,使得能够确定SHR的浆料原料的最佳组成以获得SMR的所需合成气比输出。 因此,可以将氢气进料和原料的水含量调节到提供SMR的SHR中,以确定SMR的合成气比输出。
Abstract:
A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. A slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and/or process heat or is fed into a Fischer-Tropsch reactor under conditions whereby a liquid fuel is produced. Molten salt loops are used to transfer heat from the hydro-gasification reactor, and Fischer-Tropsch reactor if liquid fuel is produced, to the steam generator and the steam pyrolytic reformer.
Abstract:
A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. A slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and/or process heat or is fed into a Fischer-Tropsch reactor under conditions whereby a liquid fuel is produced. Molten salt loops are used to transfer heat from the hydro-gasification reactor, and Fischer-Tropsch reactor if liquid fuel is produced, to the steam generator and the steam pyrolytic reformer.
Abstract:
An apparatus and method for gas detection. The apparatus comprises a) a sample chamber for holding a gas sample, b) a sealable vacuum port in fluid communication with the sample chamber, for evacuating the sample chamber, c) a sealable inlet port in fluid communication with the sample chamber, for introducing the gas sample into the evacuated sample chamber, and d) a thermal conductivity sensing element at least partly disposed within the sample chamber, for measuring the thermal conductivity of the gas sample. A gas sample released into the evacuated sample chamber requires a time interval to contact the thermal conductivity sensing element. The time interval is a measure of gas speed. Thermal conductivity and temperature of the gas sample are measured following determination of gas speed. By determining three parameters in a single sample of gas, different gas mixtures having similar thermal conductivities can be distinguished.
Abstract:
A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. In one embodiment, a slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and/or process heat or is fed into a Fischer-Tropsch reactor under conditions whereby a liquid fuel is produced. Molten salt loops are used to transfer heat from the hydro-gasification reactor, and Fischer-Tropsch reactor if liquid fuel is produced, to the steam generator and the steam pyrolytic reformer. In another embodiment of the invention, carbonaceous material can be heated simultaneously in the presence of both hydrogen and steam to undergo steam pyrolysis and hydro-gasification in a single step.