Abstract:
An embodiment of the invention is a microtip microplasma device having a first metal microtip opposing a second metal microtip with a gap therebetween. The first and second metal microtips are encapsulated in metal oxide that electrically isolates and physically connects the first and second metal microtips. In preferred devices, the first and second metal microtips and metal oxide comprise a monolithic, unitary structure. Arrays can be flexible, can be arranged in stacks, and can be formed into cylinders, for example, for gas and liquid processing devices, air filters and other applications. A preferred method of to forming an array of microtip microplasma devices provides a metal mesh with an array of micro openings therein. Electrode areas of the metal mesh are masked leaving planned connecting metal oxide areas of the metal mesh unmasked. Planned connecting metal oxide areas are electrochemically etched to convert the planned connecting metal oxide areas to metal oxide that encapsulates opposing metal microtips therein. The mask is removed. The electrode areas are electrochemically etched to encapsulate the electrode areas in metal oxide.
Abstract:
An embodiment of the invention is a microtip microplasma device having a first metal microtip opposing a second metal microtip with a gap therebetween. The first and second metal microtips are encapsulated in metal oxide that electrically isolates and physically connects the first and second metal microtips. In preferred devices, the first and second metal microtips and metal oxide comprise a monolithic, unitary structure. Arrays can be flexible, can be arranged in stacks, and can be formed into cylinders, for example, for gas and liquid processing devices, air filters and other applications. A preferred method of to forming an array of microtip microplasma devices provides a metal mesh with an array of micro openings therein. Electrode areas of the metal mesh are masked leaving planned connecting metal oxide areas of the metal mesh unmasked. Planned connecting metal oxide areas are electrochemically etched to convert the planned connecting metal oxide areas to metal oxide that encapsulates opposing metal microtips therein. The mask is removed. The electrode areas are electrochemically etched to encapsulate the electrode areas in metal oxide.
Abstract:
Preferred embodiments of the invention provide microcavity plasma lamps having a plurality of metal and metal oxide layers defining a plurality of arrays of microcavities and encapsulated thin metal electrodes. Packaging encloses the plurality of metal and metal oxide layers in plasma medium. The metal and metal oxide layers are configured and arranged to vary the electric field strength and total gas pressure (E/p) in the lamp. The invention also provides methods of manufacturing a microcavity plasma lamp that simultaneously evacuate the volume within the packaging and a volume surrounding the packaging to maintain an insignificant or zero pressure differential across the packaging. The packaging is backfilled with a plasma medium while also maintaining an insignificant or zero pressure differential across the packaging.
Abstract:
Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
Abstract:
Preferred embodiments of the invention provide microcavity plasma lamps having a plurality of metal and metal oxide layers defining a plurality of arrays of microcavities and encapsulated thin metal electrodes. Packaging encloses the plurality of metal and metal oxide layers in plasma medium. The metal and metal oxide layers are configured and arranged to vary the electric field strength and total gas pressure (E/p) in the lamp. The invention also provides methods of manufacturing a microcavity plasma lamp that simultaneously evacuate the volume within the packaging and a volume surrounding the packaging to maintain an insignificant or zero pressure differential across the packaging. The packaging is backfilled with a plasma medium while also maintaining an insignificant or zero pressure differential across the packaging.
Abstract:
Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
Abstract:
A microplasma device of the invention includes a microcavity or microchannel defined at least partially within a thick metal oxide layer consisting essentially of defect free oxide. Electrodes are arranged with respect to the microcavity or microchannel to stimulate plasma generation in said microcavity or microchannel upon application of suitable voltage and at least one of the electrodes is encapsulated within the thick metal oxide layer. Large arrays can be formed and are highly robust as lack of microcracks in the oxide avoid dielectric breakdown.
Abstract:
An array of microcavity plasma devices is formed in a unitary sheet of oxide with embedded microcavities or microchannels and embedded metal driving electrodes isolated by oxide from the microcavities or microchannels and arranged so as to generate sustain a plasma in the embedded microcavities or microchannels upon application of time-varying voltage when a plasma medium is contained in the microcavities or microchannels.
Abstract:
The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
Abstract:
An array of microcavity plasma devices is formed in a ceramic substrate that provides structure for and isolation of an array of microcavities that are defined in the ceramic substrate. The ceramic substrate isolates the microcavities from electrodes disposed within the ceramic substrate. The electrodes are disposed to ignite a discharge in microcavities in the array of microcavities upon application of a time-varying potential between the electrodes. Embodiments of the invention include electrode and microcavity arrangements that permit addressing of individual microcavities or groups of microcavities. The contour of the microcavity wall allows for the electric field within the microcavity to be shaped.