Encapsulated metal microtip microplasma devices, arrays and fabrication methods
    1.
    发明授权
    Encapsulated metal microtip microplasma devices, arrays and fabrication methods 有权
    封装的金属微尖端微型器件,阵列和制造方法

    公开(公告)号:US08547004B2

    公开(公告)日:2013-10-01

    申请号:US13188715

    申请日:2011-07-22

    Abstract: An embodiment of the invention is a microtip microplasma device having a first metal microtip opposing a second metal microtip with a gap therebetween. The first and second metal microtips are encapsulated in metal oxide that electrically isolates and physically connects the first and second metal microtips. In preferred devices, the first and second metal microtips and metal oxide comprise a monolithic, unitary structure. Arrays can be flexible, can be arranged in stacks, and can be formed into cylinders, for example, for gas and liquid processing devices, air filters and other applications. A preferred method of to forming an array of microtip microplasma devices provides a metal mesh with an array of micro openings therein. Electrode areas of the metal mesh are masked leaving planned connecting metal oxide areas of the metal mesh unmasked. Planned connecting metal oxide areas are electrochemically etched to convert the planned connecting metal oxide areas to metal oxide that encapsulates opposing metal microtips therein. The mask is removed. The electrode areas are electrochemically etched to encapsulate the electrode areas in metal oxide.

    Abstract translation: 本发明的一个实施例是一种微尖端微型装置,其具有与第二金属微尖端相对的第一金属微尖端,其间具有间隙。 第一和第二金属微尖端被封装在金属氧化物中,其电隔离并物理地连接第一和第二金属微尖端。 在优选的装置中,第一和第二金属微尖端和金属氧化物包括整体的单一结构。 阵列可以是柔性的,可以堆叠布置,并且可以形成为气缸,例如用于气体和液体处理装置,空气过滤器等应用。 形成微尖锐微量器件阵列的优选方法提供了金属网,其中具有微孔开口阵列。 金属网的电极区域被掩蔽,留下金属网的计划连接的金属氧化物区域未被掩蔽。 计算的连接金属氧化物区域进行电化学蚀刻,以将计划的连接金属氧化物区域转换成在其中封装相对的金属微尖端的金属氧化物。 去除面具。 电化学蚀刻电极区域以将电极区域包封在金属氧化物中。

    ENCAPSULATED METAL MICROTIP MICROPLASMA DEVICES, ARRAYS AND FABRICATION METHODS
    2.
    发明申请
    ENCAPSULATED METAL MICROTIP MICROPLASMA DEVICES, ARRAYS AND FABRICATION METHODS 有权
    包埋金属微孔微波器件,阵列和制造方法

    公开(公告)号:US20120074830A1

    公开(公告)日:2012-03-29

    申请号:US13188715

    申请日:2011-07-22

    Abstract: An embodiment of the invention is a microtip microplasma device having a first metal microtip opposing a second metal microtip with a gap therebetween. The first and second metal microtips are encapsulated in metal oxide that electrically isolates and physically connects the first and second metal microtips. In preferred devices, the first and second metal microtips and metal oxide comprise a monolithic, unitary structure. Arrays can be flexible, can be arranged in stacks, and can be formed into cylinders, for example, for gas and liquid processing devices, air filters and other applications. A preferred method of to forming an array of microtip microplasma devices provides a metal mesh with an array of micro openings therein. Electrode areas of the metal mesh are masked leaving planned connecting metal oxide areas of the metal mesh unmasked. Planned connecting metal oxide areas are electrochemically etched to convert the planned connecting metal oxide areas to metal oxide that encapsulates opposing metal microtips therein. The mask is removed. The electrode areas are electrochemically etched to encapsulate the electrode areas in metal oxide.

    Abstract translation: 本发明的一个实施例是一种微尖端微型装置,其具有与第二金属微尖端相对的第一金属微尖端,其间具有间隙。 第一和第二金属微尖端被封装在金属氧化物中,其电隔离并物理地连接第一和第二金属微尖端。 在优选的装置中,第一和第二金属微尖端和金属氧化物包括整体的单一结构。 阵列可以是柔性的,可以堆叠布置,并且可以形成为气缸,例如用于气体和液体处理装置,空气过滤器等应用。 形成微尖锐微量器件阵列的优选方法提供了金属网,其中具有微孔开口阵列。 金属网的电极区域被掩蔽,留下金属网的计划连接的金属氧化物区域未被掩蔽。 计算的连接金属氧化物区域进行电化学蚀刻,以将计划的连接金属氧化物区域转换成在其中封装相对的金属微尖端的金属氧化物。 去除面具。 电化学蚀刻电极区域以将电极区域包封在金属氧化物中。

    VARIABLE ELECTRIC FIELD STRENGTH METAL AND METAL OXIDE MICROPLASMA LAMPS AND FABRICATION
    3.
    发明申请
    VARIABLE ELECTRIC FIELD STRENGTH METAL AND METAL OXIDE MICROPLASMA LAMPS AND FABRICATION 有权
    可变电场强度金属和金属氧化物微波炉和制造

    公开(公告)号:US20110148282A1

    公开(公告)日:2011-06-23

    申请号:US12640884

    申请日:2009-12-17

    CPC classification number: H01J17/49 H01J17/16 H01J65/046

    Abstract: Preferred embodiments of the invention provide microcavity plasma lamps having a plurality of metal and metal oxide layers defining a plurality of arrays of microcavities and encapsulated thin metal electrodes. Packaging encloses the plurality of metal and metal oxide layers in plasma medium. The metal and metal oxide layers are configured and arranged to vary the electric field strength and total gas pressure (E/p) in the lamp. The invention also provides methods of manufacturing a microcavity plasma lamp that simultaneously evacuate the volume within the packaging and a volume surrounding the packaging to maintain an insignificant or zero pressure differential across the packaging. The packaging is backfilled with a plasma medium while also maintaining an insignificant or zero pressure differential across the packaging.

    Abstract translation: 本发明的优选实施例提供了具有限定多个微腔阵列和封装的薄金属电极的多个金属和金属氧化物层的微腔等离子体灯。 包装在等离子体介质中包围多个金属和金属氧化物层。 金属和金属氧化物层被配置和布置成改变灯中的电场强度和总气体压力(E / p)。 本发明还提供了制造微腔等离子体灯的方法,其同时抽空包装内的体积和围绕包装的体积,以保持整个包装上的微不足道或零压差。 包装用等离子体介质回填,同时在整个包装上保持不显着或零压差。

    Phosphor coating for irregular surfaces and method for creating phosphor coatings

    公开(公告)号:US09659737B2

    公开(公告)日:2017-05-23

    申请号:US13183255

    申请日:2011-07-14

    CPC classification number: H01J29/20 H01J9/222 H01J61/44 Y10T428/24421

    Abstract: Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.

    Variable electric field strength metal and metal oxide microplasma lamps and fabrication
    5.
    发明授权
    Variable electric field strength metal and metal oxide microplasma lamps and fabrication 有权
    可变电场强度金属和金属氧化物微米灯和制造

    公开(公告)号:US08541946B2

    公开(公告)日:2013-09-24

    申请号:US12640884

    申请日:2009-12-17

    CPC classification number: H01J17/49 H01J17/16 H01J65/046

    Abstract: Preferred embodiments of the invention provide microcavity plasma lamps having a plurality of metal and metal oxide layers defining a plurality of arrays of microcavities and encapsulated thin metal electrodes. Packaging encloses the plurality of metal and metal oxide layers in plasma medium. The metal and metal oxide layers are configured and arranged to vary the electric field strength and total gas pressure (E/p) in the lamp. The invention also provides methods of manufacturing a microcavity plasma lamp that simultaneously evacuate the volume within the packaging and a volume surrounding the packaging to maintain an insignificant or zero pressure differential across the packaging. The packaging is backfilled with a plasma medium while also maintaining an insignificant or zero pressure differential across the packaging.

    Abstract translation: 本发明的优选实施例提供了具有限定多个微腔阵列和封装的薄金属电极的多个金属和金属氧化物层的微腔等离子体灯。 包装在等离子体介质中包围多个金属和金属氧化物层。 金属和金属氧化物层被配置和布置成改变灯中的电场强度和总气体压力(E / p)。 本发明还提供了制造微腔等离子体灯的方法,其同时抽空包装内的体积和围绕包装的体积,以保持整个包装上的微不足道或零压差。 包装用等离子体介质回填,同时在整个包装上保持不显着或零压差。

    PHOSPHOR COATING FOR IRREGULAR SURFACES AND METHOD FOR CREATING PHOSPHOR COATINGS
    6.
    发明申请
    PHOSPHOR COATING FOR IRREGULAR SURFACES AND METHOD FOR CREATING PHOSPHOR COATINGS 有权
    用于非正式表面的磷光涂料和创建磷酸盐涂层的方法

    公开(公告)号:US20120025696A1

    公开(公告)日:2012-02-02

    申请号:US13183255

    申请日:2011-07-14

    CPC classification number: H01J29/20 H01J9/222 H01J61/44 Y10T428/24421

    Abstract: Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.

    Abstract translation: 微结构化的不规则表面构成特殊挑战,但是本发明的涂层可以用一层或多层磷光体均匀地涂覆不规则和微结构化的表面。 优选的实施方案涂层用于微腔等离子体装置,并且衬底是例如具有图案化和微结构化电介质表面的器件电极。 用于形成本发明的薄封装磷光体涂层的方法将均匀的金属或聚合物层糊料施加到基底上。 在另一个实施方案中,低温熔点金属沉积在基底上。 聚合物颗粒沉积在金属层上,或者将荧光体颗粒和溶剂的混合物沉积在均匀的玻璃,金属或聚合物层上。 随后温度控制以驱除溶剂的顺序软和硬烘烤将使玻璃,金属或聚合物层的最低熔点成分软化或熔化,部分或完全将磷光体颗粒嵌入玻璃,聚合物或金属层中,部分 或完全包封荧光体颗粒和/或用于将颗粒锚定到表面。

    MICROCAVITY AND MICROCHANNEL PLASMA DEVICE ARRAYS IN A SINGLE, UNITARY SHEET
    8.
    发明申请
    MICROCAVITY AND MICROCHANNEL PLASMA DEVICE ARRAYS IN A SINGLE, UNITARY SHEET 有权
    微阵列和微通道等离子体装置阵列

    公开(公告)号:US20110181169A1

    公开(公告)日:2011-07-28

    申请号:US12991237

    申请日:2009-05-14

    Abstract: An array of microcavity plasma devices is formed in a unitary sheet of oxide with embedded microcavities or microchannels and embedded metal driving electrodes isolated by oxide from the microcavities or microchannels and arranged so as to generate sustain a plasma in the embedded microcavities or microchannels upon application of time-varying voltage when a plasma medium is contained in the microcavities or microchannels.

    Abstract translation: 微腔等离子体装置的阵列形成在具有嵌入的微腔或微通道的一体的氧化物片和由微腔或微通道中的氧化物隔离的嵌入的金属驱动电极中,并且被布置成在施加了微腔或微通道时在嵌入的微腔或微通道中产生维持等离子体 当等离子体介质包含在微通道或微通道中时,具有时变电压。

    MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    9.
    发明申请
    MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA 有权
    具有微波增益介质的MICROCHANNEL激光

    公开(公告)号:US20100296978A1

    公开(公告)日:2010-11-25

    申请号:US12682977

    申请日:2008-10-27

    CPC classification number: H01S3/05 H01S3/03 H01S3/063 H01S3/09 H01S3/0971

    Abstract: The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.

    Abstract translation: 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。

    Addressable microplasma devices and arrays with buried electrodes in ceramic
    10.
    发明授权
    Addressable microplasma devices and arrays with buried electrodes in ceramic 有权
    可寻址微型器件和阵列,其中埋置电极在陶瓷中

    公开(公告)号:US07642720B2

    公开(公告)日:2010-01-05

    申请号:US11337969

    申请日:2006-01-23

    CPC classification number: H01J11/18 H05H1/2406 H05H2001/2418 H05H2001/2437

    Abstract: An array of microcavity plasma devices is formed in a ceramic substrate that provides structure for and isolation of an array of microcavities that are defined in the ceramic substrate. The ceramic substrate isolates the microcavities from electrodes disposed within the ceramic substrate. The electrodes are disposed to ignite a discharge in microcavities in the array of microcavities upon application of a time-varying potential between the electrodes. Embodiments of the invention include electrode and microcavity arrangements that permit addressing of individual microcavities or groups of microcavities. The contour of the microcavity wall allows for the electric field within the microcavity to be shaped.

    Abstract translation: 在陶瓷衬底中形成微腔等离子体器件的阵列,其提供在陶瓷衬底中限定的微腔阵列的结构和隔离。 陶瓷衬底将微腔与设置在陶瓷衬底内的电极隔离。 电极被设置成在施加电极之间的时变电位时,以微腔阵列中的微腔中点燃放电。 本发明的实施例包括允许寻址单个微腔或微腔组的电极和微腔布置。 微腔壁的轮廓允许微腔内的电场成形。

Patent Agency Ranking