Abstract:
A computer-implemented method includes identifying two or more memory locations and referencing, by a memory access request, the two or more memory locations. The memory access request is a single action pursuant to a memory protocol. The computer-implemented method further includes sending the memory access request from one or more processors to a node and fetching, by the node, data content from each of the two or more memory locations. The computer-implemented method further includes packaging, by the node, the data content from each of the two or more memory locations into a memory package, and returning the memory package from the node to the one or more processors. A corresponding computer program product and computer system are also disclosed.
Abstract:
A computer system includes a processor, main memory, and controller. The processor includes a plurality of hardware threads configured to execute a plurality of software threads. The main memory includes a first register table configured to contain a current set of architected registers for the currently running software threads. The controller is configured to change a first number of the architected registers assigned to a given one of the software threads to a second number of architected registers when a result of monitoring current usage of the registers by the software threads indicates that the change will improve performance of the computer system. The processor includes a second register table configured to contain a subset of the architected registers and a mapping table for each software thread indicating whether the architected registers referenced by the corresponding software thread are located in the first register table or the second register table.
Abstract:
A transactional memory system salvages a hardware lock elision (HLE) transaction. A processor of the transactional memory system, based on a detection of a pending point-of-failure in a code region during HLE transactional execution, stops HLE transactional execution prior to the pending point-of-failure in the code region. The processor, based on information about a lock elided, commits a speculative state of the stopped HLE transactional execution that is stored, at least in part, in a gathering store cache. The processor starts non-transactional execution at the point of failure in the code region.
Abstract:
A method for detecting a software-race condition in a program includes copying a state of a transaction of the program from a first core of a multi-core processor to at least one additional core of the multi-core processor, running the transaction, redundantly, on the first core and the at least one additional core given the state, outputting a result of the first core and the at least one additional core, and detecting a difference in the results between the first core and the at least one additional core, wherein the difference indicates the software-race condition.
Abstract:
Embodiments relate to implementing a coherence protocol. An aspect includes sending a request for data to a remote processor and receiving by a processor a response from the remote processor. The response has a transaction status of a remote transaction on the remote processor. The processor adds the transaction status of the remote transaction on the remote processor in a local transaction interference tracking table.
Abstract:
A transactional memory system determines whether to pass control of a transaction to an about-to-run-out-of-resource handler. A processor of the transactional memory system determines information about an about-to-run-out-of-resource handler for transaction execution of a code region of a hardware transaction. The processor dynamically monitors an amount of available resource for the currently running code region of the hardware transaction. The processor detects that the amount of available resource for transactional execution of the hardware transaction is below a predetermined threshold level. The processor, based on the detecting, saves speculative state information of the hardware transaction, and executes the about-to-run-out-of-resource handler, the about-to-run-out-of-resource handler determining whether the hardware transaction is to be aborted or salvaged.
Abstract:
Execution of a transaction may be initiated by a CPU in a transactional execution (TX) environment. A set of TX performance characteristics of the transaction during the transactional execution may be collected and stored in a location specified by an instruction of the transaction when the transactional execution ends or aborts.
Abstract:
Execution of a transaction may be initiated by a CPU in a transactional execution (TX) environment. A set of TX performance characteristics of the transaction during the transactional execution may be collected and stored in a location specified by an instruction of the transaction when the transactional execution ends or aborts.
Abstract:
A method for detecting errors in hardware including running a transaction on a plurality of cores, wherein each of the cores runs a respective copy of the transaction, periodically synchronizing the transaction on the cores throughout execution of the transaction, comparing results of the transaction on the cores, and determining an error in one or more of the cores.
Abstract:
A transactional memory system salvages a hardware lock elision (HLE) transaction. A processor of the transactional memory system, based on a detection of a pending point-of-failure in a code region during HLE transactional execution, stops HLE transactional execution prior to the pending point-of-failure in the code region. The processor, based on information about a lock elided, commits a speculative state of the stopped HLE transactional execution that is stored, at least in part, in a gathering store cache. The processor starts non-transactional execution at the point of failure in the code region.