摘要:
Embodiments include a method comprising depositing a hard mask layer over a first layer, the hard mask layer including; lower hard mask layer, hard mask stop layer, and upper hard mask. The hard mask layer and the first layer are patterned and a spacer deposited on the patterned sidewall. The upper hard mask layer and top portion of the spacer are removed by selective etching with respect to the hard mask stop layer, the remaining spacer material extending to a first predetermined position on the sidewall. The hard mask stop layer is removed by selective etching with respect to the lower hard mask layer and spacer. The first hard mask layer and top portion of the spacer are removed by selectively etching the lower hard mask layer and the spacer with respect to the first layer, the remaining spacer material extending to a second predetermined position on the sidewall.
摘要:
Oxygen scavenging material embedded in an isolation structure provides improved protection of high dielectric constant (Hi-K) materials from oxygen contamination while avoiding alteration of work function and switching threshold shift in transistors including such Hi-K materials.
摘要:
A method of forming a semiconductor device is provided that includes forming an oxide containing isolation region in a semiconductor substrate to define an active semiconductor region. A blanket gate stack including a high-k gate dielectric layer may then be formed on the active semiconductor region. At least a portion of the blanket gate stack extends from the active semiconductor device region to the isolation region. The blanket gate stack may then be etched to provide an opening over the isolation region. The surface of the isolation region that is exposed by the opening may then be isotropically etched to form an undercut region in the isolation region that extend under the high-k gate dielectric layer. An encapsulating dielectric material may then be formed in the opening filling the undercut region. The blanket gate stack may then be patterned to form a gate structure.
摘要:
A substrate is provided. An STI trench is formed in the substrate. A fill material is formed in the STI trench and then planarized. The substrate is exposed to an oxidizing ambient, growing a liner at a bottom and sidewalls of the STI trench. The liner reduces the Vt-W effect in high-k metal gate devices.
摘要:
Embodiments include a method comprising depositing a hard mask layer over a first layer, the hard mask layer including; lower hard mask layer, hard mask stop layer, and upper hard mask. The hard mask layer and the first layer are patterned and a spacer deposited on the patterned sidewall. The upper hard mask layer and top portion of the spacer are removed by selective etching with respect to the hard mask stop layer, the remaining spacer material extending to a first predetermined position on the sidewall. The hard mask stop layer is removed by selective etching with respect to the lower hard mask layer and spacer. The first hard mask layer and top portion of the spacer are removed by selectively etching the lower hard mask layer and the spacer with respect to the first layer, the remaining spacer material extending to a second predetermined position on the sidewall.
摘要:
A method of forming a semiconductor device is provided that includes forming an oxide containing isolation region in a semiconductor substrate to define an active semiconductor region. A blanket gate stack including a high-k gate dielectric layer may then be formed on the active semiconductor region. At least a portion of the blanket gate stack extends from the active semiconductor device region to the isolation region. The blanket gate stack may then be etched to provide an opening over the isolation region. The surface of the isolation region that is exposed by the opening may then be isotropically etched to form an undercut region in the isolation region that extend under the high-k gate dielectric layer. An encapsulating dielectric material may then be formed in the opening filling the undercut region. The blanket gate stack may then be patterned to form a gate structure.