Abstract:
An apparatus and a system, as well as a method and article, may operate to include repeating first data to provide first repeated data and deleting second repeated data to provide second data according to a programmed standard included in a first apparatus and selected from a plurality of reprogrammable standards.
Abstract:
A reconfigurable decoder is capable of performing both Viterbi decoding and turbo decoding. The reconfigurable decoder may be repeatedly reconfigured to work with any of a number of different convolutional or turbo coding schemes. In at least one embodiment, the reconfigurable decoder is capable of automatically reconfiguring itself based on a present signal environment about a communication device carrying the decoder.
Abstract:
A method, a computer readable medium and an apparatus to adaptively control a data transmission rate of a wireless display device. The method includes determining a current data transmission rate capacity of a wireless channel; and controlling a data transmission rate of a wireless transmission device based on the current data transmission rate capacity.
Abstract:
In various embodiments, a processing element (PE) includes a data router adaptor (DRA) and one or more elements that produce function packets. When the DRA receives a function packet, it generates a set of associated router packets. Each of the associated router packets includes a segment of the function packet, and has a router packet data length that is less than or equal to the function packet length. In one embodiment, the router packet data lengths are included in a table, and can be re-configured to alter system performance parameters (e.g., bandwidth usage and/or latency). The DRA sends the set of associated router packets to a router for delivery through a packet-based network. A destination DRA receives the set of associated router packets, and generates a re-assembled function packet from the set of associated router packets. The destination DRA sends the re-assembled function packet to a destination element.
Abstract:
An apparatus and a system, as well as a method and article, may operate to control a bandwidth of a memory coupled to a plurality of data processing units responsive to protocol indications, such as a number of data processing units in use. In some embodiments, apparatus and systems, as well as methods and articles, may operate to select a memory access group size of about 2N memory banks responsive to receiving an indication of a change in a protocol type, wherein the group is selected from a number B of banks, and N is associated with the protocol type.
Abstract:
In various embodiments, a processing element (PE) includes a data router adaptor (DRA) and one or more elements that produce function packets. When the DRA receives a function packet, it generates a set of associated router packets. Each of the associated router packets includes a segment of the function packet, and has a router packet data length that is less than or equal to the function packet length. In one embodiment, the router packet data lengths are included in a table, and can be re-configured to alter system performance parameters (e.g., bandwidth usage and/or latency). The DRA sends the set of associated router packets to a router for delivery through a packet-based network. A destination DRA receives the set of associated router packets, and generates a re-assembled function packet from the set of associated router packets. The destination DRA sends the re-assembled function packet to a destination element.
Abstract:
A computer implemented method of manipulating and displaying an MPEG stream is described. In one embodiment of the invention, a computer implemented method comprises defining a spatial location across a series of pictures of an MPEG stream; and for each picture of the series of pictures in the MPEG stream, partially decoding the picture to determine an area of the picture falling within the spatial location.
Abstract:
A dual mesh interconnect network in a heterogeneous configurable circuit may be allocated between data communication and control communication.
Abstract:
An apparatus includes a primary information storage unit, a secondary information storage unit, and an information processing unit. The primary information storage unit has a primary storage capacity. The secondary information storage unit has a secondary storage capacity. The secondary storage capacity is less than the primary storage capacity. The secondary information storage unit receives information from the primary information storage unit and the information processing unit processes the information to form a transform.