摘要:
A graphics processing system performs hidden surface removal and texturing/shading on fragments of primitives. The system includes a primary depth buffer (PDB) for storing depth values of resolved fragments, and a secondary depth buffer (SDB) for storing depth values of unresolved fragments. Incoming fragments are depth tested against depth values from either the PDB or the SDB. When a fragment passes a depth test, its depth value is stored in the PDB if it is a resolved fragment (e.g. if it is opaque or translucent), and its depth value is stored in the SDB if it is an unresolved fragment (e.g. if it is a punch through fragment). This provides more opportunities for subsequent opaque objects to overwrite punch through fragments which passed a depth test, thereby reducing unnecessary processing and time which may be spent on fragments which ultimately will not contribute to the final rendered image.
摘要:
A graphics processing unit having multiple groups of processor cores for rendering graphics data for allocated tiles and outputting the processed data to regions of a memory resource. Scheduling logic allocates sets of tiles to the groups of processor cores to perform a first render, and at a time when at least one of the groups has not completed processing its allocated sets of one or more tiles as part of the first render, allocates at least one set of tiles for a second render to one of the other groups of processor cores for processing. Progress indication logic indicates progress of the first render, indicating regions of the memory resource for which processing for the first render has been completed. Progress check logic checks the progress indication in response to a request for access to a region of the memory resource as part of the second render and enables access that region of the resource in response to an indication that processing for the first render has been completed for that region.
摘要:
A SIMD processing unit processes a plurality of tasks which each include up to a predetermined maximum number of work items. The work items of a task are arranged for executing a common sequence of instructions on respective data items. The data items are arranged into blocks, with some of the blocks including at least one invalid data item. Work items which relate to invalid data items are invalid work items. The SIMD processing unit comprises a group of processing lanes configured to execute instructions of work items of a particular task over a plurality of processing cycles. A control module assembles work items into the tasks based on the validity of the work items, so that invalid work items of the particular task are temporally aligned across the processing lanes. In this way the number of wasted processing slots due to invalid work items may be reduced.
摘要:
A graphics processing unit having multiple groups of processor cores for rendering graphics data for allocated tiles and outputting the processed data to regions of a memory resource. Scheduling logic allocates sets of tiles to the groups of processor cores to perform a first render, and at a time when at least one of the groups has not completed processing its allocated sets of one or more tiles as part of the first render, allocates at least one set of tiles for a second render to one of the other groups of processor cores for processing. Progress indication logic indicates progress of the first render, indicating regions of the memory resource for which processing for the first render has been completed. Progress check logic checks the progress indication in response to a request for access to a region of the memory resource as part of the second render and enables access that region of the resource in response to an indication that processing for the first render has been completed for that region.
摘要:
A graphics processing system performs hidden surface removal and texturing/shading on fragments of primitives. The system includes a primary depth buffer (PDB) for storing depth values of resolved fragments, and a secondary depth buffer (SDB) for storing depth values of unresolved fragments. Incoming fragments are depth tested against depth values from either the PDB or the SDB. When a fragment passes a depth test, its depth value is stored in the PDB if it is a resolved fragment (e.g. if it is opaque or translucent), and its depth value is stored in the SDB if it is an unresolved fragment (e.g. if it is a punch through fragment). This provides more opportunities for subsequent opaque objects to overwrite punch through fragments which passed a depth test, thereby reducing unnecessary processing and time which may be spent on fragments which ultimately will not contribute to the final rendered image.
摘要:
A graphics processing system includes a tiling unit for performing tiling calculations and a hidden surface removal (HSR) unit for performing HSR on fragments of the primitives. Primitive depth information is calculated in the tiling unit and forwarded for use by the HSR unit in performing HSR on the fragments. This takes advantage of the tiling unit having access to the primitive data before the HSR unit performs the HSR on the primitives, to determine some depth information which can simplify the HSR performed by the HSR unit. Therefore, the final values of a depth buffer determined in the tiling unit can be used in the HSR unit to determine that a particular fragment will subsequently be hidden by a fragment of a primitive which is yet to be processed in the HSR unit, such that the particular fragment can be culled.
摘要:
A SIMD processing unit processes a plurality of tasks which each include up to a predetermined maximum number of work items. The work items of a task are arranged for executing a common sequence of instructions on respective data items. The data items are arranged into blocks, with some of the blocks including at least one invalid data item. Work items which relate to invalid data items are invalid work items. The SIMD processing unit comprises a group of processing lanes configured to execute instructions of work items of a particular task over a plurality of processing cycles. A control module assembles work items into the tasks based on the validity of the work items, so that invalid work items of the particular task are temporally aligned across the processing lanes. In this way the number of wasted processing slots due to invalid work items may be reduced.
摘要:
A tile-based graphics system has a rendering space sub-divided into a plurality of tiles which are to be processed. Graphics data items, such as parameters or texels, are fetched into a cache for use in processing one of the tiles. Indicators are determined for the graphics data items, whereby the indicator for a graphics data item indicates the number of tiles with which that graphics data item is associated. The graphics data items are evicted from the cache in accordance with the indicators of the graphics data items. For example, the indicator for a graphics data item may be a count of the number of tiles with which that graphics data item is associated, whereby the graphics data item(s) with the lowest count(s) is (are) evicted from the cache.
摘要:
A SIMD processing unit processes a plurality of tasks which each include up to a predetermined maximum number of work items. The work items of a task are arranged for executing a common sequence of instructions on respective data items. The data items are arranged into blocks, with some of the blocks including at least one invalid data item. Work items which relate to invalid data items are invalid work items. The SIMD processing unit comprises a group of processing lanes configured to execute instructions of work items of a particular task over a plurality of processing cycles. A control module assembles work items into the tasks based on the validity of the work items, so that invalid work items of the particular task are temporally aligned across the processing lanes. In this way the number of wasted processing slots due to invalid work items may be reduced.
摘要:
A tile-based graphics system has a rendering space sub-divided into a plurality of tiles which are to be processed. Graphics data items, such as parameters or texels, are fetched into a cache for use in processing one of the tiles. Indicators are determined for the graphics data items, whereby the indicator for a graphics data item indicates the number of tiles with which that graphics data item is associated. The graphics data items are evicted from the cache in accordance with the indicators of the graphics data items. For example, the indicator for a graphics data item may be a count of the number of tiles with which that graphics data item is associated, whereby the graphics data item(s) with the lowest count(s) is (are) evicted from the cache.