Abstract:
Embodiments herein described a coherency protocol for a distributed computing topology that permits for large stalls on various interfaces. In one embodiment, the computing topology includes multiple boards which each contain multiple processors. When a particular core on a processor wants access to data that is not currently stored in its cache, the core can first initiate a request to search for the cache line in the caches for other cores on the same processor. If the cache line is not found, the cache coherency protocol permits the processor to then broadcast a request to the other processors on the same board. If a processor on the same board does not have the data, the processor can then broadcast the request to the other boards in the system. The processors in those boards can then search their caches to identify the data.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Methods and systems for cache management are provided. Aspects include providing a drawer including a plurality of clusters, each of the plurality of clusters including a plurality of processor each having one or more cores, wherein each of the one or more cores shares a first cache memory, providing a second cache memory shared among the plurality of clusters, and receiving a cache line request from one of the one or more cores to the first cache memory, wherein the first cache memory sends a request to a memory controller to retrieve the cache line from a memory, store the cache line in the first cache memory, create a directory state associated with the cache line, and provide the directory state to the second cache memory to create a directory entry for the cache line.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Methods and systems for cache management are provided. Aspects include providing a drawer including a plurality of clusters, each of the plurality of clusters including a plurality of processor each having one or more cores, wherein each of the one or more cores shares a first cache memory, providing a second cache memory shared among the plurality of clusters, and receiving a cache line request from one of the one or more cores to the first cache memory, wherein the first cache memory sends a request to a memory controller to retrieve the cache line from a memory, store the cache line in the first cache memory, create a directory state associated with the cache line, and provide the directory state to the second cache memory to create a directory entry for the cache line.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.
Abstract:
Embodiments relate to pre-silicon device testing using a persistent command table. An aspect includes receiving a value for a persistent command parameter from a user. Another aspect includes determining whether the value of the persistent command parameter is greater than zero. Another aspect includes based on determining whether the value of the persistent command parameter is greater than zero, selecting a number of commands equal to the value of the persistent command parameter from a regular command table of a driver of a device under test. Another aspect includes adding the selected commands to the persistent command table of the driver. Another aspect includes performing testing of the device under test via the driver using only commands that are in the persistent command table of the driver.