Abstract:
Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
Abstract:
Semiconductor structures and methods of fabricating the same using multiple nanosecond pulsed laser anneals are provided. The method includes exposing a gate stack formed on a semiconducting material to multiple nanosecond laser pulses at a peak temperature below a melting point of the semiconducting material.
Abstract:
Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
Abstract:
Semiconductor structures and methods of fabricating the same using interrupted deposition processes and multiple laser anneals are provided. The structure includes a high-k gate stack with a high-k bilayer or nanolaminate where a bottom portion of the bilayer is crystallized while a top portion of the bilayer is amorphous.
Abstract:
Semiconductor structures and methods of fabricating the same using multiple nanosecond pulsed laser anneals are provided. The method includes exposing a gate stack formed on a semiconducting material to multiple nanosecond laser pulses at a peak temperature below a melting point of the semiconducting material.
Abstract:
Semiconductor structures and methods of fabricating the same using multiple nanosecond pulsed laser anneals are provided. The method includes exposing a gate stack formed on a semiconducting material to multiple nanosecond laser pulses at a peak temperature below a melting point of the semiconducting material.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.