Abstract:
A technology for an enhanced node B (eNode B) in a cellular network that is operable to determine downtilt using full dimensional (FD) multiple-input multiple-output (MIMO). A plurality of orthogonal frequency division multiple access (OFDMA) signals can be transmitted, wherein each transmitted OFDMA signal is transmitted with a selected downtilt angle from a two dimensional antenna array of the eNode B. Reference signal received power (RSRP) feedback information can be received from a UE for each of transmitted OFDMA signals at the selected downtilt angles. Received signal strength indicator (RSSI) feedback information can be received from the UE. A reference signal received quality (RSRQ) can be calculated for each of the selected antennas angles using the RSRP feedback information and the RSSI feedback information. A downtilt angle can be selected for transmitting data from the eNode B with a highest signal to interference plus noise ratio (SINR).
Abstract:
Devices and methods of providing symmetric UL and DL ACK/NACKs is generally described. UL ACK/NACKs of different UEs are multiplexed and received by a UE with a PUSCH. The receiving UE in response transmits the DL ACK/NACK. The ACK/NACK may be transmitted in a localized or distributed manner among subbands that may be adjacent or each may have blocks separated by blocks of a different subband. The ACK and NACK may use independent resources or the NACK may not be transmitted on the single ACK/NACK resource, the lack of an ACK serving as a NACK. The ACK/NACK may be transmitted using a beamforming weight shaped by the received PUSCH/PDSCH. The ACK/NACK symbol may be located in the first symbol, adjacent to the PUSCH/PDSCH, or at the end of a TTI. If adjacent, the UL grant or UL assignment may indicate whether the ACK/NACK resource is used by the PUSCH/PDSCH.
Abstract:
Devices and methods of providing symmetric UL and DL ACK/NACKs is generally described. UL ACK/NACKs of different UEs are multiplexed and received by a UE with a PUSCH. The receiving UE in response transmits the DL ACK/NACK. The ACK/NACK may be transmitted in a localized or distributed manner among subbands that may be adjacent or each may have blocks separated by blocks of a different subband. The ACK and NACK may use independent resources or the NACK may not be transmitted on the single ACK/NACK resource, the lack of an ACK serving as a NACK. The ACK/NACK may be transmitted using a beamforming weight shaped by the received PUSCH/PDSCH. The ACK/NACK symbol may be located in the first symbol, adjacent to the PUSCH/PDSCH, or at the end of a TTI. If adjacent, the UL grant or UL assignment may indicate whether the ACK/NACK resource is used by the PUSCH/PDSCH.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for reducing the overhead associated with the transmission of channel training signals from an eNodeB (eNB) of a wireless network. Specifically, the eNB may receive feedback from a user equipment (UE) regarding the received signal energy of a first and second beamformed signal produced with a first and second beamforming vector, respectively. The eNB may identify, based on the feedback of the received signal energy, a signal subspace and a null subspace. The eNB may then transmit a channel training signal to the signal subspace.
Abstract:
A hybrid digital and analog beamforming device for a node operable with an antenna array is disclosed. In an example, the hybrid digital and analog beamforming device can include computer circuitry configured to: Segment antenna elements of an antenna array into at least two groups of antenna elements; map antenna ports for transmission chains to one group of the antenna elements; constrain digital precoding weights for a digital precoder for the antenna elements, where the digital precoding weight includes a digital phase and amplitude; and determine analog precoding weights for an analog precoder for the antenna elements, where the analog precoding weight includes an analog phase.
Abstract:
Technology to generate an improved signal-to-interference-plus-noise ratio (SINR) from a set of orthogonal reference signals (RSs) is disclosed. In an example, a user equipment (UE) can include computer circuitry configured to: Receive a set of orthogonal RSs from a node; calculate a SINR for each of the RSs in the set of orthogonal RSs to form a set of SINR; select a maximum SINR from the set of SINR; and quantize the maximum SINR for the set of SINR. Each reference signal can represent a transmission beam direction.
Abstract:
Disclosed herein are apparatuses, systems, and methods using or implementing dynamic beamforming in control channels, by transmitting downlink control channels to user equipment (UEs) in a number of orthogonal frequency division multiplexing (OFDM) symbols of a downlink subframe. A first OFDM symbol of the number of OFDM symbols can be transmitted using first beamforming parameters in a first direction, and a second OFDM symbol of the number of OFDM symbols can be transmitted using second beamforming parameters different from the first beamforming parameters and in a second direction different from the first direction. The number of OFDM symbols used, as well as other parameters, can be dynamically adjusted in subsequent subframes. Other embodiments are described.
Abstract:
Embodiments of a system and method for beamforming in a Wireless Network are generally described herein. In some embodiments, an enhanced Node B (eNB) transmits to User Equipment (UE), from a plurality (Nc) of antenna ports of a plurality (Nt) of transmit antennas, a data signal where signal power is allocated in eigen beams, each of the Nt transmit antennas having antenna ports that are adjustable in elevation and in azimuth. The eNB also determines and transmits to the UE a Pc set of the largest principal eigen beams of the data signal and receives, as feedback from the UE, a precoding matrix that identifies the antenna port from which strongest energy in the data signal is detected at the UE. The eNB uses the precoding matrix for beamforming.
Abstract:
Machine-readable media, methods, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system are disclosed. In some embodiments, an apparatus may comprise an electrical downtilt module to determine an electrical downtilt angle for an antenna port selected from a number of antenna ports based on information from an user equipment (UE); and a codebook module to select a codeword corresponding to the antenna port from a codebook and calculate a weight of an antenna array of the eNB through inputting the electronic downtilt angle into the codeword, wherein the codebook has a first number of codewords, each of the codewords having a second number of elements to represent the weight of the antenna array, and wherein each of the codewords corresponds to each of the antenna ports and each of the elements corresponds to each antenna of the antenna array.
Abstract:
Briefly, in accordance with one or more embodiments, cooperation of multiple beams for transmission is provided by identifying at least two beams among multiple beams that are dominant for a user, determining if there is any beam collision between the at least two beams, and, if there is beam collision between the at least two beams, delaying scheduling on one or more weaker ones of the at least two beams for other users and combining the two or more beams for transmission to the user. Alternatively, cooperation of multiple beams for transmission is provided by, if there is beam collision between the at least two beams, muting one or more weaker ones of the at least two beams and transmitting to the user with a stronger one of the at least two beams.