Abstract:
The disclosure is directed to an air purifier and an automobile air conditioner with an air purifier. The air purifier includes a reactor, a column, an air guider and a plurality of light emitting elements. The reactor includes an air inlet and an air outlet. The column is disposed in the reactor, and the column has a N-side walls. The air guider is disposed on the column, and the air guider is coated with a photocatalyst. The light emitting elements are placed on the N side walls of the column configured to irradiate on the photocatalyst, where each of the light emitting elements has an emitting angle of θ and θ*N>360°.
Abstract:
A light source apparatus comprises a main body, a plurality of light source modules and a processor. The main body includes a plurality of configuration areas distributed on a surface of the main body. The plurality of configuration areas is oriented towards different directions, respectively. The plurality of light source modules is located in the plurality of configuration areas, respectively. Each of the plurality of light source modules includes a circuit substrate and an ultraviolet emitting device. The processor is electrically connected to the plurality of light source modules. The processor is adapted to drive the ultraviolet emitting device of each of the plurality of light source modules. A method of using a light source apparatus is also provided.
Abstract:
A light emitting diode includes a semiconductor stacked structure, a substrate, a first electrode, a second electrode and a third electrode. The semiconductor stacked structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer. The first semiconductor layer has a first surface and a second surface opposite to each other and has a first region and a second region. The second semiconductor layer is disposed on the second surface. The light emitting layer is disposed between the first semiconductor layer and the second semiconductor layer. The substrate has a first conductive layer and a second conductive layer thereon. The first electrode is disposed between the second semiconductor layer and the first conductive layer. The second electrode is disposed on the first surface. The third electrode is disposed between the second region and the second conductive layer, and electrically connected to the second electrode.
Abstract:
A light-emitting diode package structure including a chip carrier portion, a light-emitting diode chip, and a package material is provided. The light-emitting diode chip is disposed on the chip carrier portion of the package. The package material is filled in the chip carrier portion and covers the light-emitting diode chip. The package material includes a matrix material, a plurality of first powder particles, and a plurality of second powder particles. The first powder particles and the second powder particles are distributed in the matrix material. Each first powder particle is a wavelength conversion material. Each second powder particle has a shell-like structure.
Abstract:
A fluid sterilizing device includes a first reaction chamber, a second reaction chamber, a communication chamber and a light source. The first reaction chamber is connected to a fluid inlet. The second reaction chamber is connected to a fluid outlet. The communication chamber is connected the first reaction chamber with the second reaction chamber. The light source is configured to emit sterilization light to enter the first reaction chamber and the second reaction chamber. The fluid inlet allows a fluid to enter the first reaction chamber, the communication chamber allows the fluid to pass through and enter the second reaction chamber, and a flow velocity distribution of the fluid in the second reaction chamber is different from that of the fluid in the first reaction chamber.
Abstract:
A fluid sterilizing device includes a first reaction chamber, a second reaction chamber, a communication chamber and a light source. The first reaction chamber is connected to a fluid inlet. The second reaction chamber is connected to a fluid outlet. The communication chamber is connected the first reaction chamber with the second reaction chamber. The light source is configured to emit sterilization light to enter the first reaction chamber and the second reaction chamber. The fluid inlet allows a fluid to enter the first reaction chamber, the communication chamber allows the fluid to pass through and enter the second reaction chamber, and a flow velocity distribution of the fluid in the second reaction chamber is different from that of the fluid in the first reaction chamber.
Abstract:
A package structure of an ultraviolet light emitting diode is provided, which includes a substrate, a transparent body, at least one ultraviolet light emitting diode, a connecting element and an ultraviolet shielding layer. The transparent body is disposed on the substrate. The transparent body has a space inside thereof. The at least one ultraviolet light emitting diode is disposed on the substrate and inside the space. The connecting element is disposed between the substrate and the transparent body. The ultraviolet shielding layer is disposed between the transparent body and the connecting element.
Abstract:
A light emitting diode includes a semiconductor stacked structure, a substrate, a first electrode, a second electrode and a third electrode. The semiconductor stacked structure includes a first semiconductor layer, a second semiconductor layer and a light emitting layer. A light extraction layer with a roughened structure is formed on the doped semiconductor layer to improve the light emitting efficiency of LED. Furthermore, the strength of the semiconductor stacked structure can be enhanced by the light extraction layer, to improve the reliability of the LED and the production yields of manufacturing process.
Abstract:
Provided is a substrate, including a substrate material, two conductive structures, and at least one diode. The two conductive structures extend from a first surface of the substrate material to a second surface of the substrate material via two through holes penetrating through the substrate material. The at least one diode is embedded in the substrate material at a sidewall of one of the through holes.