摘要:
An RSD FET device with a recessed channel is formed with a raised silicon sources and drains and a gate electrode structure formed on an SOI structure (a Si layer formed on a substrate) by the steps as follows. Form a SiGe layer over the Si layer and a RSD layer over the SiGe. Etch through the RSD layer and the SiGe to form a gate electrode space reaching down the Si layer. Form a pair of RSD regions separated by the gate electrode space. Line the walls of the gate electrode space with an internal etch stop layer and an inner sidewall spacers. Form a gate electrode inside the inner sidewall spacers on the Si layer. Form external sidewall spacers adjacent to the gate electrode between the RSD regions next to the inner sidewall spacers, and dope the RSD regions, whereby a recessed channel is formed in the SOI silicon layer between the raised source/drain regions thereabove and below the level of the SiGe layer.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
A multi-gate device has a high-k dielectric layer for a top channel of the gate and a protective layer for use in a finFET device. The high-k dielectric layer is placed on the top surface of the channel of the finFET and may reduce or eliminate silicon consumption in the channel. The use of the high-k dielectric layer on the top surface reduces hysteresis and mobility degradation associated with high-k dielectrics. The protection layer may protect the high-k dielectric layer during an etching process.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
A semiconductor structure includes a first finFET and a second finFET. The first finFET and the second finFET may comprise an n-finFET and a p-finFET to provide a CMOS finFET structure. Within the semiconductor structure, at least one of: (1) a first gate dielectric within the first finFET and a second gate dielectric within the second finFET comprise different gate dielectric materials; and/or (2) a first gate electrode within the first finFET and a second gate electrode within the second finFET comprise different gate electrode materials.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
A method is provided of making a gated semiconductor device. Such method can include patterning a single-crystal semiconductor region of a substrate to extend in a lateral direction parallel to a major surface of a substrate and to extend in a direction at least substantially vertical and at least substantially perpendicular to the major surface, the semiconductor region having a first side and a second side opposite, e.g., remote from the first side. A first gate may be formed overlying the first side, the first gate having a first gate length in the lateral direction. A second gate may be formed overlying the second side, the second gate having a second gate length in the lateral direction which is different from the first gate length. In one embodiment, the second gate length may be shorter than the first gate length. In one embodiment, the first gate may consist essentially of polycrystalline silicon germanium and the second gate may consist essentially of polysilicon.
摘要:
A semiconductor structure includes a first finFET and a second finFET. The first finFET and the second finFET may comprise an n-finFET and a p-finFET to provide a CMOS finFET structure. Within the semiconductor structure, at least one of: (1) a first gate dielectric within the first finFET and a second gate dielectric within the second finFET comprise different gate dielectric materials; and/or (2) a first gate electrode within the first finFET and a second gate electrode within the second finFET comprise different gate electrode materials.
摘要:
Described is a method for making thin channel silicon-on-insulator structures. The inventive method comprises forming a set of thin spacer abutting a gate region in a first device and a second device region; forming a raised source/drain region on either side of the gate region in the first device region and the second device region, implanting dopants of a first conductivity type into the raised source drain region in the first device region to form a first dopant impurity region, where the second device region is protected by a second device region block mask; implanting dopants of a second conductivity type into the raised source/drain region in the second device region to form a second dopant impurity region, where the first device region is protected by a first device region block mask; and activating the first dopant impurity region and the second dopant impurity region to provide a thin channel MOSFET.