Pattern measurement device and pattern measurement method

    公开(公告)号:US12174551B2

    公开(公告)日:2024-12-24

    申请号:US17732969

    申请日:2022-04-29

    Abstract: A computation device is provided for measuring the dimensions of patterns formed on a sample based on a signal obtained from a charged particle beam device. The computation device includes a positional deviation amount calculation unit for calculating the amount of positional deviation in a direction parallel to a wafer surface between two patterns having different heights based on an image acquired at a given beam tilt angle; a pattern inclination amount calculation unit for calculating an amount of pattern inclination from the amount of positional deviation using a predetermined relational expression for the amount of positional deviation and the amount of pattern inclination; and a beam tilt control amount calculation unit for controlling the beam tilt angle so as to match the amount of pattern inclination. The pattern measurement device sets the beam tilt angle to a calculated beam tilt angle, reacquires an image and measures the patterns.

    Scanning electron microscope and method for measuring pattern

    公开(公告)号:US11276554B2

    公开(公告)日:2022-03-15

    申请号:US16941806

    申请日:2020-07-29

    Abstract: A scanning electron microscope includes an electron-optical system including an electron source and an objective lens, a stage on which a sample is placed, a secondary electron detector disposed adjacent to the electron source relative to the objective lens and configured to detect secondary electrons, a backscattered electron detector disposed between the objective lens and the stage and configured to detect backscattered electrons, a backscattered electron detection system controller configured to apply a voltage to the backscattered electron detector, and a device-control computer configured to detect a state of an electrical charge carried by the backscattered electron detector based on signal intensity at the secondary electron detector when the primary electrons are applied to the sample with a predetermined voltage applied to the backscattered electron detector.

    ELECTRON MICROSCOPE AND METHOD OF ADJUSTING FOCUS OF ELECTRON MICROSCOPE

    公开(公告)号:US20210384006A1

    公开(公告)日:2021-12-09

    申请号:US17338353

    申请日:2021-06-03

    Abstract: When focus adjustment is performed according to the height of the surface of a sample at each inspection point in order to continuously inspect a plurality of inspection points on a wafer by using an electron microscope, even when the focus adjustment by an electrostatic lens in which a variation of heights of inspection points is greater than a predetermined range, and that can perform adjustment at a high speed and adjustment by an electromagnetic lens with a low speed are required to be used together, a flow of focus adjustment in which the number of times of the adjustment by the electromagnetic lens is reduced by using a relation of changes of heights at inspection points, an inspection order, and a range in which an electrostatic focus can be performed is realized, so that inspection with high throughput is made possible.

    Pattern measurement device and pattern measurement method

    公开(公告)号:US10816332B2

    公开(公告)日:2020-10-27

    申请号:US16086063

    申请日:2016-04-13

    Abstract: The purpose of the present invention is to provide a pattern measurement device that is capable of highly accurately measuring a groove bottom, hole bottom, or the like, regardless of the accuracy of the formation of a deep groove or deep hole. To that end, the present invention proposes a pattern measurement device provided with a computation device for measuring the dimensions of a pattern formed on a sample on the basis of a signal obtained by a charged particle beam device, wherein the computation device determines the deviation between a first part of the pattern and a second part of the pattern at a different height than the first part and pattern dimension values on the basis of a detection signal obtained on the basis of the scanning of the sample by a charged particle beam and corrects the pattern dimension values using the deviation determined from the detection signal and relationship information indicating the relationship between the pattern dimensions and the deviation.

    Pattern Measurement Device and Pattern Measurement Method

    公开(公告)号:US20220260930A1

    公开(公告)日:2022-08-18

    申请号:US17732969

    申请日:2022-04-29

    Abstract: A computation device is provided for measuring the dimensions of patterns formed on a sample based on a signal obtained from a charged particle beam device. The computation device includes a positional deviation amount calculation unit for calculating the amount of positional deviation in a direction parallel to a wafer surface between two patterns having different heights based on an image acquired at a given beam tilt angle; a pattern inclination amount calculation unit for calculating an amount of pattern inclination from the amount of positional deviation using a predetermined relational expression for the amount of positional deviation and the amount of pattern inclination; and a beam tilt control amount calculation unit for controlling the beam tilt angle so as to match the amount of pattern inclination. The pattern measurement device sets the beam tilt angle to a calculated beam tilt angle, reacquires an image and measures the patterns.

    SCANNING ELECTRON MICROSCOPE AND METHOD FOR MEASURING PATTERN

    公开(公告)号:US20210043420A1

    公开(公告)日:2021-02-11

    申请号:US16941806

    申请日:2020-07-29

    Abstract: A scanning electron microscope includes an electron-optical system including an electron source and an objective lens, a stage on which a sample is placed, a secondary electron detector disposed adjacent to the electron source relative to the objective lens and configured to detect secondary electrons, a backscattered electron detector disposed between the objective lens and the stage and configured to detect backscattered electrons, a backscattered electron detection system controller configured to apply a voltage to the backscattered electron detector, and a device-control computer configured to detect a state of an electrical charge carried by the backscattered electron detector based on signal intensity at the secondary electron detector when the primary electrons are applied to the sample with a predetermined voltage applied to the backscattered electron detector.

    Charged particle beam system
    8.
    发明授权

    公开(公告)号:US12068128B2

    公开(公告)日:2024-08-20

    申请号:US17702343

    申请日:2022-03-23

    Abstract: An object of the invention is to acquire a high-quality image while maintaining an improvement in throughput of image acquisition (measurement (length measurement)). The present disclosure provides a charged particle beam system including a charged particle beam device and a computer system configured to control the charged particle beam device. The charged particle beam device includes an objective lens, a sample stage, and a backscattered electron detector that is disposed between the objective lens and the sample stage and that adjusts a focus of a charged particle beam with which a sample is irradiated. The computer system adjusts a value of an electric field on the sample in accordance with a change in a voltage applied to the backscattered electron detector.

    Charged particle beam device
    9.
    发明授权

    公开(公告)号:US11626266B2

    公开(公告)日:2023-04-11

    申请号:US17501249

    申请日:2021-10-14

    Abstract: Provided is a charged particle beam device capable of focusing with high accuracy even when a charged particle beam has a large off-axis amount. The charged particle beam device generates an observation image of a sample by irradiating the sample with a charged particle beam, and includes: a deflection unit that inclines the charged particle beam; a focusing lens that focuses the charged particle beam; an adjustment unit that adjusts a lens strength of the focusing lens based on an evaluation value calculated from the observation image; a storage unit that stores a relationship between a visual field movement amount and the lens strength; and a filter setting unit that calculates the visual field movement amount based on an inclination angle of the charged particle beam and the relationship, and sets an image filter to be superimposed on the observation image based on the calculated visual field movement amount.

Patent Agency Ranking