Abstract:
A magnetic memory pillar cell and a method for implementing the magnetic memory cell for use in Solid-State Drives (SSDs) are provided. A magnetic memory cell includes a first conductor M1, and a second conductor M2, the second conductor M1 surrounded by the first conductor M1 and a programmable area using unpatterned programmable magnetic media. At least one of the conductors M1, M2 is formed of a magnetic material, and the conductor M2 is more conductive than conductor M1. An oxide barrier extends between the first conductor M1 and a programmable input to the magnetic memory pillar cell; and the oxide barrier is unpatterned.
Abstract:
A three-dimensional (3D) scalable magnetic memory array and a method for implementing the three-dimensional (3D) scalable magnetic memory array for use in Solid-State Drives (SSDs) are provided. A three-dimensional (3D) scalable magnetic memory array includes an interlayer dielectric (IDL) stack of word planes separated by a respective IDL. A plurality of pillar holes is formed in the IDL stack in a single etch step; each of the pillar holes including an oxide barrier coating, and a first conductor M1, and a second conductor M2 forming magnetic pillar memory cells. The first conductor M1 is formed of a magnetic material, and the second conductor M2 is more electrically conductive than the conductor M1; and each of the magnetic pillar memory cell inside the pillar holes have a programmable area using unpatterned programmable magnetic media proximate to a respective one of the word planes.
Abstract:
A magnetic memory integrated with complementary metal oxide semiconductor (CMOS) driving circuits and a method for implementing magnetic memory integrated with complementary metal oxide semiconductor (CMOS) driving circuits for use in Solid-State Drives (SSDs) are provided. A complementary metal oxide semiconductor (CMOS) wafer is provided, and a magnetic memory is formed on top of the CMOS wafer providing a functioning magnetic memory chip.
Abstract:
A magnetic memory cell and a method for implementing the magnetic memory cell for use in Solid-State Drives (SSDs) are provided. A magnetic memory cell includes a first conductor M1, and a second conductor M2 and a programmable area using unpatterned programmable magnetic media. At least one of the conductors M1, M2 is formed of a magnetic material, and the conductor M2 is more conductive than conductor M1. Steering of current is provided for programming the magnetic memory cell.