Abstract:
In an image acquisition device, an optical path difference generating member can form an optical path length difference of a second light image without splitting light in a second optical path. This can suppress the quantity of light required for the second optical path to obtain information of the focal position, whereby a quantity of light can be secured for a first imaging device to capture an image. The image acquisition device synchronizes the movement of a predetermined part of a sample within a field of an objective lens with rolling readout such that each pixel column of a second imaging device is exposed to a light image of the predetermined part in the sample.
Abstract:
In the image capturing apparatus, the optical path difference producing member is disposed on the second optical path. Thereby, it is possible to suppress the amount of light when an optical image which is focused at the front of an optical image made incident into the first imaging device (front focus) and an optical image which is focused at the rear thereof (rear focus) are respectively imaged at the second imaging device and also to secure the amount of light on image pickup by the first imaging device. Further, in the image capturing apparatus, a position of the first imaging region and a position of the second imaging region on the imaging area are reversed with respect to the axis P in association with reversal of a scanning direction of the sample. Therefore, despite the scanning direction of the sample, it is possible to obtain a deviation direction of the focus position under the same conditions.
Abstract:
In an image acquisition device, an optical path length difference in a second light figure can be formed by arrangement of an optical path difference generating member, without need for splitting light in a second optical path for focus control. Therefore, it reduces the quantity of light into the second optical path necessary for acquisition of information of focal position while ensuring the quantity of light enough for execution of imaging by a first imaging device. Furthermore, in this image acquisition device, a light reduction portion is provided between a first face and a second face of the optical path difference generating member. This light reduction portion can narrow a light superimposed region on the imaging surface of the second imaging device, which allows control of the focal position to a sample to be accurately carried out.
Abstract:
In the image capturing apparatus, the optical path difference producing member is disposed on the second optical path. Thereby, it is possible to suppress the amount of light when an optical image which is focused at the front of an optical image made incident into the first imaging device (front focus) and an optical image which is focused at the rear thereof (rear focus) are respectively imaged at the second imaging device and also to secure the amount of light on image pickup by the first imaging device. Further, in the image capturing apparatus, a position of the first imaging region and a position of the second imaging region on the imaging area are reversed with respect to the axis P in association with reversal of a scanning direction of the sample. Therefore, despite the scanning direction of the sample, it is possible to obtain a deviation direction of the focus position under the same conditions.
Abstract:
An image capturing apparatus is configured to store the control result of a focus position during scanning of segmented regions and determine an initial focus position in scanning of the (n+1)th segmented region, based on the control result stored during scanning of the nth (n is an integer of 1 or more) or earlier segmented region. The foregoing technique allows this image capturing apparatus to roughly determine the initial focus position in the next-scanned segmented region by making use of the control result of the segmented region the scanning of which has been already completed. This can suppress increase in processing time necessary for imaging, by simplification of pre-focus.