Abstract:
A method of controlling a power inverter coupled to an electric motor in a vehicle powertrain having an engine is provided. The method includes generating a voltage waveform signal and a switching frequency signal for the inverter via a controller. At least one of the voltage waveform signal and the switching frequency signal is at least partially based on at least one commanded engine operating parameter. For example, the engine on/off state, engine torque, and engine speed can be considered. A vehicle having a controller configured to implement the method is also provided.
Abstract:
A hybrid powertrain with an engine, motor/generator, a belt drive train, a starting mechanism and one or more switching devices for one or more energy storage devices has at least one electronic controller that executes a stored algorithm and controls the hybrid powertrain in accordance with the stored algorithm to establish multiple operating modes including an operating mode in which a first switching device establishes an electrical connection between a first energy storage device and the motor/generator. The operating mode established can be dependent upon a parameter of the first energy storage device, a parameter of the control system, a parameter of the motor/generator, and/or a parameter of said at least one actuator. For example, the stored algorithm can control the hybrid powertrain based on a capacity to restart the engine.
Abstract:
A method of controlling a power inverter coupled to an electric motor in a vehicle powertrain having an engine is provided. The method includes generating a voltage waveform signal and a switching frequency signal for the inverter via a controller. At least one of the voltage waveform signal and the switching frequency signal is at least partially based on at least one commanded engine operating parameter. For example, the engine on/off state, engine torque, and engine speed can be considered. A vehicle having a controller configured to implement the method is also provided.
Abstract:
A controller for an electric vehicle having an electric motor is provided. The controller includes a motor control processor (MCP) module configured to control torque output of the electric motor. The controller also includes a first main processor monitor (MPM) module and a second MPM module. The first MPM module and the second MPM module are configured to separately determine a state of health of the MCP module, and to generate a first fault signal and a second fault signal, respectively, after determining the MCP module is not functional. The controller further includes a voting control module configured to receive at least one of the first fault signal from the first MPM module, and the second fault signal from the second MPM module, and to generate an override command when it receives both the first fault signal and the second fault signal. The override command overrides the MCP module.
Abstract:
An electric machine electrically connects to an inverter via a multi-phase power circuit. A method for monitoring the multi-phase power circuit includes non-intrusively adjusting a commanded AC electric current from the inverter after a prescribed time period and comparing a measured magnitude of AC electric current in the multi-phase power circuit with a minimum threshold. Presence of an open circuit fault in the multi-phase power circuit can be detected based upon the comparison.
Abstract:
A method of controlling a powertrain system includes determining a torque request; selecting feasible input torque and input speed operating points; calculating aggregate system power losses; determining turbo efficiency as a function of a difference between a feasible input torque rate of change and a desired input torque rate of change required to reach the desired output torque; summing the turbo efficiency to the aggregate system power losses to determine total system losses corresponding to feasible input torques and input speed capable of producing the desired output torque; determining a feasible input torque and input speed corresponding to a substantially minimum total system power loss; and selecting as a desired input speed and input torque that corresponds to the substantially minimum total system power loss.
Abstract:
A powertrain includes a propulsion system having first and second torque sources, and first and second drive axles respectively connected to and independently driven by the first and second torque sources. A permissible range of torque contribution from the torque sources to the respective first and second drive axles is defined by a component torque window. The powertrain includes sensors for detecting a dynamic driving maneuver of a vehicle having the powertrain. A controller executes a method to adjust a size and/or orientation of a chassis torque window during the detected dynamic driving maneuver, determine an optimally efficient axle torque operating point that falls on a torque line within the component torque window in proximity to the chassis torque window, and command the torque contribution via transmission of torque control signals to the first and second torque sources to achieve the optimally efficient axle torque operating point.
Abstract:
A method for controlling an electrically-powered torque machine of a powertrain system includes determining a predicted torque command to control the torque machine. A flux command is determined responsive to the predicted torque command. The flux command is a flux level providing a fast torque reserve that is responsive to the predicted torque command. The fast torque reserve is a prescribed minimum rate of change in torque output from the torque machine responsive to the predicted torque command. An inverter controller controls flux of the torque machine responsive to the flux command.
Abstract:
A powertrain includes a propulsion system having first and second torque sources, and first and second drive axles respectively connected to and independently driven by the first and second torque sources. A permissible range of torque contribution from the torque sources to the respective first and second drive axles is defined by a component torque window. The powertrain includes sensors for detecting a dynamic driving maneuver of a vehicle having the powertrain. A controller executes a method to adjust a size and/or orientation of a chassis torque window during the detected dynamic driving maneuver, determine an optimally efficient axle torque operating point that falls on a torque line within the component torque window in proximity to the chassis torque window, and command the torque contribution via transmission of torque control signals to the first and second torque sources to achieve the optimally efficient axle torque operating point.
Abstract:
A controller for an electric vehicle having an electric motor is provided. The controller includes a motor control processor (MCP) module configured to control torque output of the electric motor. The controller also includes a first main processor monitor (MPM) module and a second MPM module. The first MPM module and the second MPM module are configured to separately determine a state of health of the MCP module, and to generate a first fault signal and a second fault signal, respectively, after determining the MCP module is not functional. The controller further includes a voting control module configured to receive at least one of the first fault signal from the first MPM module, and the second fault signal from the second MPM module, and to generate an override command when it receives both the first fault signal and the second fault signal. The override command overrides the MCP module.