Abstract:
Fabrication of a slim split gate cell and the resulting device are disclosed. Embodiments include forming a first gate on a substrate, the first gate having an upper surface and a hard-mask covering the upper surface, forming an interpoly isolation layer on side surfaces of the first gate and the hard-mask, forming a second gate on one side of the first gate, with an uppermost point of the second gate below the upper surface of the first gate, removing the hard-mask, forming spacers on exposed vertical surfaces, and forming a salicide on exposed surfaces of the first and second gates.
Abstract:
A one-time programmable (OTP) fuse includes a fuse link including a thin film resistor (TFR) layer between a first insulator layer and a second insulator layer. A first terminal of the OTP fuse includes a first conductive pillar through one of the first and second insulator layers and in contact with the TFR layer; and a second terminal of the OTP fuse includes a second conductive pillar through one of the first and second insulator layers and in contact with the TFR layer. The second conductive pillar and the TFR layer have a lateral contact interface having a same shape as an outer portion of the second conductive pillar. The second conductive pillar does not simply land on the TFR layer, but extends through it. Application of a current to the OTP fuse results in programming via rupture of the lateral contact interface (not electromigration in the fuse link).
Abstract:
A device and methods of forming the device are disclosed. A substrate with a circuits component and a dielectric layer with interconnects is provided. A pad level dielectric layer is formed over the dielectric layer. A primary passivation layer is formed over the pad level dielectric layer with pad interconnects. The substrate is subjected to an alloying process. During the alloying process, the primary passivation layer prevents or reduces formation of hillocks on surfaces of the pad interconnects to improve surface smoothness of the pad interconnects. Pad openings are formed in the pad level dielectric layer to expose top surfaces of the pad interconnects. A cap dielectric layer is formed on the substrate and lines the primary passivation layer as well as the exposed top surfaces of the pad interconnects. A final passivation layer is formed on the substrate and covers the cap dielectric layer. The final passivation layer is patterned to form final passivation openings corresponding to the pad openings.
Abstract:
The present disclosure generally relates to a semiconductor device having a capacitor and a resistor and a method of forming the same. More particularly, the present disclosure relates to a metal-insulator-metal (MIM) capacitor and a thin film resistor (TFR) formed in a back end of line portion of an integrated circuit (IC) chip.
Abstract:
A structure comprises a substrate and a conductive pad disposed over the substrate. A conductive layer overlies the conductive pad. A via is disposed over the conductive pad. The via penetrates through the conductive layer and touches a surface of the conductive pad.
Abstract:
Fabrication of a slim split gate cell and the resulting device are disclosed. Embodiments include forming a first gate on a substrate, the first gate having an upper surface and a hard-mask covering the upper surface, forming an interpoly isolation layer on side surfaces of the first gate and the hard-mask, forming a second gate on one side of the first gate, with an uppermost point of the second gate below the upper surface of the first gate, removing the hard-mask, forming spacers on exposed vertical surfaces, and forming a salicide on exposed surfaces of the first and second gates.
Abstract:
A one-time programmable (OTP) fuse includes a fuse link including a thin film resistor (TFR) layer between a first insulator layer and a second insulator layer. A first terminal of the OTP fuse includes a first conductive pillar through one of the first and second insulator layers and in contact with the TFR layer; and a second terminal of the OTP fuse includes a second conductive pillar through one of the first and second insulator layers and in contact with the TFR layer. The second conductive pillar and the TFR layer have a lateral contact interface having a same shape as an outer portion of the second conductive pillar. The second conductive pillar does not simply land on the TFR layer, but extends through it. Application of a current to the OTP fuse results in programming via rupture of the lateral contact interface (not electromigration in the fuse link).
Abstract:
Structures including compound semiconductor-based devices and silicon-based devices integrated on a semiconductor substrate and methods of forming such structures. The structure comprises a layer stack on a substrate, a conductive contact extending in a vertical direction fully through the layer stack to the substrate, and a device structure including a source ohmic contact and a drain ohmic contact. The layer stack including a plurality of semiconductor layers each comprising a compound semiconductor material, the conductive contact is arranged in the layer stack to separate a first portion of the layer stack from a second portion of the layer stack, and the source ohmic contact and the drain ohmic contact have a contacting relationship with at least one of the plurality of semiconductor layers of the first portion of the layer stack.
Abstract:
Method for forming a memory device are disclosed. Embodiments include forming memory cells over a substrate, each memory cell includes a control gate (CG) formed over a floating gate (FG) and a select gate (SG) formed adjacent to a first side of the CG and FG, wherein a vertical oxide layer is formed between the SG and the CG and FG, forming an implant mask layer over a portion of the SG, CG and vertical oxide of each memory cell; and implanting dopants into the substrate using the implant mask to form source drain (S/D) regions between the memory cells.
Abstract:
Methods of producing integrated circuits and integrated circuits produced by those methods are provided. In an exemplary embodiment, a method of producing an integrated circuit includes forming first and second shallow trench isolations within a substrate, where the first and second shallow trench isolations have an initial shallow trench height. A base well is formed in the substrate, where the base well is positioned between the first and second shallow trench isolations. A gate dielectric is formed overlying the base well, and a floating gate is formed overlying the gate dielectric. An initial shallow trench height is reduced to a reduced shallow trench height shorter than the initial shallow trench height after the floating gate is formed.