摘要:
This invention relates to a synthetic porous zeolite, identified as ZSM-57, a method for its preparation and use thereof in catalytic conversion of organic compounds. This crystalline material may have a ratio of XO.sub.2 : Y.sub.2 O.sub.3 of at least 4, wherein X represents silicon and/or germanium and Y represents aluminum, boron, chromium, iron and/or gallium. The silica/alumina form of this crystalline material has a silica to alumina ratio of at least 4 and may be prepared with directing agents which are N,N,N,N',N',N'-hexaethylpentane-diammonium compounds. The crystalline material exhibits a characteristic X-ray diffraction pattern.
摘要翻译:本发明涉及鉴定为ZSM-57的合成多孔沸石,其制备方法及其在有机化合物的催化转化中的用途。 该结晶材料可以具有至少4的XO 2 :Y 2 O 3的比例,其中X表示硅和/或锗,Y表示铝,硼,铬,铁和/或镓。 该结晶材料的二氧化硅/氧化铝形式的二氧化硅与氧化铝之比至少为4,可用N,N,N,N',N',N'-六乙基戊烷二铵化合物的导向剂制备。 结晶材料表现出特征的X射线衍射图。
摘要:
This invention relates to a synthetic porous zeolite, identified as ZSM-57, a method for its preparation. This crystalline material may have a ratio of XO.sub.2 :Y.sub.2 O.sub.3 of at least 4, wherein X represents silicon and/or germanium and Y represents aluminum, boron, chromium, iron and/or gallium. The silica/alumina form of this crystalline material has a silica to alumina ratio of at least 4 and may be prepared with directing agents which are N,N,N,N',N',N'-hexaethylpentane-diammonium compounds. The crystalline material exhibits a characteristic X-ray diffraction pattern.
摘要翻译:本发明涉及鉴定为ZSM-57的合成多孔沸石,其制备方法。 该结晶材料可以具有至少4的XO 2 :Y 2 O 3的比例,其中X表示硅和/或锗,Y表示铝,硼,铬,铁和/或镓。 该结晶材料的二氧化硅/氧化铝形式的二氧化硅与氧化铝之比至少为4,可用N,N,N,N',N',N'-六乙基戊烷二铵化合物的导向剂制备。 结晶材料表现出特征的X射线衍射图。
摘要:
A bottoms fraction of fuels hydrocracking which boils above about 600.degree. F. and contains at least 10 wt. % aromatics is converted to a reduced aromatics lube/base stock product over a catalyst comprising a crystalline material which exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams anhydrous crystal at 50 torr and 25.degree. C. and a-hydrogenation-dehydrogenation functionality, preferably palladium, under high pressure conditions sufficient to reduce the aromatics content to about 10 wt. %. The bottoms fraction is dewaxed prior to high pressure hydroprocessing over a catalyst comprising HZSM-5 to reduce the pour point of the fraction to about 20.degree. F. Typically, the bottoms fraction is produced in a moderate pressure fuels hydrocracking process over a bifunctional amorphous catalyst.
摘要:
The present invention relates to formulated lubricant oils derived from a highly paraffinic basestock. The lubricating oils of the present invention achieve the extremely stringent viscosity requirements of SAE “0W” crossgraded engine oils and demonstrate an excellent combination of low-temperature performance and biodegradability not achievable by other formulations derived from other classes of basestocks.
摘要:
A process for producing substantially linear hydrocarbons by oligomerizing a lower olefin at elevated temperature and pressure which comprises contacting the lower olefin under oligomerization/polymerization conditions with siliceous acidic ZSM-23 zeolite having Bronsted acid activity; wherein the zeolite has acidic pore activity and wherein the zeolite surface is rendered substantially inactive for acidic reactions. The zeolite surface can be neutralized by a bulky pyridine compound having an effective cross-section larger than the zeolite pore. The preferred deactivating agent is 2,4,6-collidine, which may be applied to the zeolite as a pretreatment or added with olefin feed in a continuous process. The olefin oligomers may be used as alkylating agents to prepare biodegradable alkylbenzenes and alkylphenylsulfonates. A preferred catalyst for this alkylation reaction is dealuminized mordenite.
摘要:
A process for producing substantially linear hydrocarbons by oligomerizing a lower olefin at elevated temperature and pressure which comprises contacting the lower olefin under oligomerization/polymerization conditions with siliceous acidic ZSM-23 zeolite having Bronsted acid activity; wherein the zeolite has acidic pore activity and wherein the zeolite surface is rendered substantially inactive for acidic reactions. The zeolite surface can be neutralized by a bulky pyridine compound having an effective cross-section larger than the zeolite pore. The preferred deactivating agent is 2,4,6-collidine, which may be applied to the zeolite as a pretreatment or added with olefin feed in a continuous process. The olefin oligomers may be used as alkylating agents to prepare biodegradable alkylbenzenes and alkylphenylsulfonates. A preferred catalyst for this alkylation reaction is dealuminized mordenite.
摘要:
Novel phosphite derivatives of propylene based lube olefins are novel lubricating fluid media with internal synergistic multifunctional extreme pressure, antiwear and antioxidant properties. These compounds exhibit the same multifunctional characteristics when used in minor additive amounts in either mineral or synthetic lubricating oils as well as fuels.
摘要:
Layered chalcogenide materials of high thermal stability and surface area which contain interspathic polymeric chalcogenides such as polymeric silica are prepared by ion exchanging a layered metal oxide, such as layered titanium oxide, with organic cation, to spread the layers apart. A compound such as tetraethylorthosilicate, capable of forming a polymeric oxide, is thereafter introduced between the layers. The resulting product is treated to form polymeric oxide, e.g. by hydrolysis, to produce the layered oxide material. The resulting product may be employed as catalyst material in the conversion of organic compounds.
摘要:
A process for producing substantially linear hydrocarbons by oligomerizing a lower olefin at elevated temperature and pressure which comprises contacting the lower olefin under oligomerization/polymerization conditions with siliceous acidic ZSM-23 zeolite having Bronsted acid activity; wherein the zeolite has acidic pore activity and wherein the zeolite surface is rendered substantially inactive for acidic reactions. The zeolite surface can be neutralized by a bulky pyridine compound having an effective cross-section larger than the zeolite pore. The preferred deactivating agent is 2,4,6-collidine, which may be applied to the zeolite as a pretreatment or added with olefin feed in a continuous process.