Abstract:
Aviation gasolines and additives may have manganese-containing anti-knock components. The scavengers herein mitigate the possible deleterious effects from using the manganese-containing anti-knock. The scavengers include molecules with a central atom of a Group 15 element other than nitrogen. Entities that are attached to the central atom are electron withdrawing entities including electron deficient atoms and electron deficient functional groups.
Abstract:
A synergistic antimicrobial composition having two components. The first component is a hydroxymethyl-substituted phosphorus compound. The second component is one of the following biocides: hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine, 2,6-dimethyl-1,3-dioxan-4-yl acetate or ortho-phenylphenol or its alkali metal or ammonium salts.
Abstract:
Diesel or lean-burn engines which are fitted with an exhaust system provided with a particle filter are supplied with a fuel containing an additive capable of lowering the temperature at which the soot particles trapped by the particle filter can be burned and which essentially consists of an iron compound or essentially consists of an iron compound and of a cerium compound, and wherein the particle filter through which the exhaust gases produced by the combustion of the fuel in the engine pass is a catalytic filter in which the catalyst assists with the combustion of the soot particles; this improves soot combustion dynamics, particularly at low temperatures.
Abstract:
Provided are additives of formula I for use in hydrocarbonaceous compositions, such as petroleum or liquid fuels: (I) wherein R1, R2, R3, R4, and R5 are as defined herein. The additives improve the corrosion resistance of the compositions and, when the composition is biodiesel, also improve microbial resistance. The additives further enhance the antimicrobial efficacy of any added biocides contained in such compositions.
Abstract:
A method of affecting soot particulate size in an internal combustion engine exhaust by selectively providing a phosphorous based additive to the engine during combustion. Soot particulate size can be increased or decreased depending on the particular additive provided. Also disclosed in a conditioning effect experienced by using a phosphorous based additive for a period of time. A conditioned engine can also have its exhaust properties affected during the life of its conditioned state. Manipulating particle size during engine operation can employ an oligomeric phosphorous compound. Engine conditioning can employ a monomeric phosphorous containing compound, an oligomeric phosphorous containing compound, a polymeric phosphorous containing compound, or combinations thereof.
Abstract:
A lubricant composition is disclosed that comprises lubricating oil and a mixture of at least two antioxidants, the first antioxidant being a secondary diarylamine and the second antioxidant being a substituted para-phenylenediamine. Also disclosed is a method of increasing the oxidation stability of a lubricating oil comprising adding thereto at least two antioxidants, the first antioxidant being a secondary diarylamine and the second antioxidant being a substituted para-phenylenediamine.
Abstract:
A catalyst and method for improving combustion efficiency in boilers, engines, and other equipment by adding to fossil and other fuels a fuel additive that contains an oil-soluble iron compound and an over-based magnesium compound and for which the median particle size of the additive is less than about 0.01 micrometers.
Abstract:
A safe, metal-containing combustion additive and a method of formulation is directed for use in connection with utility and industrial furnaces. The additive includes a metal-containing catalyst, a ligand for complexing with the catalyst and a solvent for carrying the catalyst/ligand complex. The vapor pressure of the additive is less than about 200×10−5 Torr at 100° F.
Abstract:
A hydrocarbonaceous fuel additive, fuel composition, and method all lower both carbon particulate emissions and improve slag properties in combustion systems including, for instance, utility furnaces and boiler systems. The mixed metal catalyst may include a transition metal-containing compound, an alkali metal compound, and a magnesium-containing compound.
Abstract:
The present invention provides a polymeric a fuel composition comprising (i) a fuel; and (ii) a polymeric compound; wherein the polymeric compound comprises at least one monomer unit of Formula I wherein R1 is H or a C1-10 hydrocarbyl group; wherein L is an optional C1-30 hydrocarbyl linker group; and wherein heterocycle is an optionally substituted heterocyclic ring.