Abstract:
An electrical interconnect is configured to provide an electrical connection between a first point and a second point. The interconnect includes a specular reflection layer adjacent a conductor layer. The conductor is configured to conduct electrons between the first and second points and the planar specular reflection layer confines the electrons to the conductor through specular reflection. This reduces electrical resistance of the electrical interconnect measured in a direction parallel with the specular reflection layer.
Abstract:
A magnetic shield that is capable of enhancing magnetic reading. In accordance with various embodiments, a magnetic element has a magnetically responsive stack shielded from magnetic flux and biased to a predetermined default magnetization by at least one lateral side shield that has a transition metal layer disposed between first and second ferromagnetic layers.
Abstract:
A method including forming a multilayer structure. The multilayer structure includes a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The multilayer structure also includes an intermediate layer comprising the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The second component is different than the first component. The multilayer structure further includes a cap layer comprising the first component. The method further includes heating the multilayer structure to an annealing temperature to cause a phase transformation of the intermediate layer. Also a hard magnet including a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The hard magnet also includes a cap layer comprising the first component. The hard magnet further includes an intermediate layer between the seed layer and the cap layer. The intermediate layer includes the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The first component is different than the second component. Additionally, a read/write head including the hard magnet.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
A transducing head has a magnetoresistive sensor and a first and a second dual path conductor/magnet structure for providing current to the magnetoresistive sensor and for stabilizing the magnetoresistive sensor. The first and the second dual path conductor/magnet structures are arranged in an abutted-junction configuration on opposite sides of the magnetoresistive sensor. Each of the first and the second dual path conductor/magnet structures has at least one bias layer and at least one conductor layer. Each bias layer is formed upon a bias seed layer positioned over one of the conductor layers. Each bias seed layer is selected to result in the bias layer formed upon it having a coercivity between about 1 kOe and about 5 kOe and an in-plane remnant squareness greater than about 0.8. Most preferably, each of the first and the second dual path conductor/magnet structures is formed of at least two conductor layers interspersed with at least one bias layer.
Abstract:
A perpendicular magnetic recording medium with antiferromagnetic coupling in a soft magnetic underlayer. The soft magnetic underlayer includes a first magnetic soft layer, a first interface layer on the first magnetic soft layer, a second magnetic soft layer, a second interface layer on the second magnetic soft layer, and a non-magnetic coupling layer between the first interface layer and the second interface layer. The first and second magnetic soft layers are antiferromagnetically exchange coupled to one another through the non-magnetic coupling layer, wherein the first and second interface layers increase the exchange coupling between the first and second magnetic soft layers.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
A magnetoresistive (MR) reader is adjacent to at least one shield that extends from an air bearing surface (ABS) a first distance. The shield has a stabilizing feature that is contactingly adjacent the MR reader and extends from the ABS a second distance that is less than the first distance.
Abstract:
In accordance with various embodiments, a magnetic shield for a magnetoresistive (MR) element has one or more lateral hard magnets and a coupling layer contactingly adjacent both the MR element and the hard magnet. The coupling layer concurrently magnetically decouples the MR element while magnetically coupling the hard magnet.
Abstract:
A shield for a read element of a magnetic recording head includes a first domain with boundaries remote from the read element and stabilized with a patterned bias element. The patterned bias element comprises a topographical pattern of grooves formed on the shield substrate.