Abstract:
A touch panel according to an embodiment of the present invention includes: a pressure detection unit including a light-source unit configured to generate an optical signal, an optical waveguide configured to transfer the optical signal, a sensing unit contacting with the optical waveguide to receive the optical signal according to an intensity of pressure applied externally, and a light-receiving unit configured to receive the optical signal transferred through the optical waveguide from the sensing unit; and an actuator contacting with the pressure detection unit to cause a deformation of a material according to the pressure intensity, wherein the actuator provides a tactile feedback through a vibration according to the pressure intensity.
Abstract:
An auto focusing lens includes an active lens including a lens body including electroactive polymer and a transparent electrode at least partially coated on a surface of the lens body, and a controller controlling the focus of the active lens by applying a voltage to the transparent electrode.
Abstract:
Provided is a thin film type actuator having multi-operation points, capable of various feels of touch or sounds. The film type actuator includes an upper plate and a lower plate, formed of a single plate. Between the upper plate and the lower plate, pairs of electrode parts capable of attracting one another via an electrostatic force. Since each of the pairs of electrode parts functions as an operation point and the upper plate and the lower plate are formed of the single plate, movements of the respective operation points in such a way that a new physical movement different from an original individual movement is generated to generate a haptic feel or a sound. It is possible to generate various haptic feels or sounds by modulating and combining amplitudes and frequencies of the respective operation points.
Abstract:
Provided are a microlens array film and a display device including the same. The microlens array film includes a first transparent electrode and a second transparent electrode facing each other and a flexible polymer layer placed between the first and the second transparent electrodes. Lenses may be freely deformed by regulating voltages applied to the first and second transparent electrodes.
Abstract:
Provided herein is an artificial muscle capable of being miniaturized, realizing precision movement, and performing selective relaxation/contraction deformation according to the power output necessary in the muscle, the muscle including a first operation unit that includes electro-active polymer where relaxation-deformation occurs based on electric energy being applied; a heating unit that generates heat energy based on the electric being applied; a second operation unit that has a yarn structure and where contraction-deformation occurs based on the heat energy generated in the heating unit; and a control unit that applies electric energy to the first operation unit and the heating unit.
Abstract:
Disclosed is a variable Fresnel lens, including: an electric active polymer layer of which a form is deformed by an electric field; and a Fresnel lens coupled to an upper portion of the electric active polymer layer, and configured to change a position of a focus according to deformation of the form of the electric active polymer layer.
Abstract:
Disclosed is a planar waveguide element including a first cylindrical lens disposed based on an z-axis and configured to collimate beams emitted from a plurality of emitters of a laser diode bar; a lens array configured to gather the beam emitted from each emitter via the first cylindrical lens; a plurality of first waveguides existing on an x-y plane by a number of the plurality of emitters and configured to gather at one place via a bending section; a taper configured to connect the lens array and each first waveguide, a width of the taper being narrower from the lens array to the plurality of first waveguide; and a combined waveguide configured to combine the plurality of first waveguides into one.
Abstract:
Provided are a composition for a light transmittance control film, and a light transmittance control film. According to the inventive concept, the light transmittance control film includes a matrix part including a copolymer and a polymer chain which is grafted to the copolymer; and a dispersed part including a polymer derived from a first monomer, and are provided in the matrix part, wherein the polymer chain is derived from the first monomer, first light transmittance is shown while external force is applied, and second light transmittance which is greater than the first light transmittance may be shown after the external force is removed.
Abstract:
A reflective active variable lens includes an upper electrode, a lower electrode disposed in parallel to the upper electrode, a deformation part disposed between the upper electrode and the lower electrode, a reflective part disposed on the upper electrode, and a support part disposed to surround the deformation part. Here, the deformation part and the support part are connected to each other to provide a single structure, the deformation part is expanded from an initial shape when an electric field is formed between the upper electrode and the lower electrode, and the expanded deformation part is contracted when the electric field is removed and restored to the initial shape.
Abstract:
There is provided an optical imaging device including a flexible image sensor and an actuator that expands or contracts the flexible image sensor on a two-dimensional plane. It is possible to minimize distortion aberration and control a viewing angle and magnification.