Abstract:
Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, such as for example, cyclopentadiene, and catalyst compositions for use in such process. The process comprising the steps of contacting said feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form said product. The catalyst composition comprising a microporous crystalline ferrosilicate, a Group 10 metal, and, optionally, a Group 11 metal, in combination with an optional Group 1 alkali metal and/or an optional Group 2 alkaline earth metal.
Abstract:
Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, such as for example, cyclopentadiene, and catalyst compositions for use in such process. The process comprising the steps of contacting said feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form said product. The catalyst composition comprising a crystalline aluminosilicate having a constraint index of less than or equal to 5, and a Group 10 metal, and, optionally, a Group 11 metal, in combination with a Group 1 alkali metal and/or a Group 2 alkaline earth metal.
Abstract:
Disclosed are (i) a process for making cyclohexylbenzene by benzene hydroalkylation with a low methylcyclopentylbenzene selectivity; and (ii) a process of making phenol and/or cyclohexanone from cyclohexylbenzene including a step of removing methylcyclopentylbenzene from the cyclohexylbenzene feed supplied to the oxidation step.
Abstract:
Disclosed is a catalyst composition and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a mordenite zeolite synthesized from TEA or MTEA, optionally at least one first metal of Group 10 of the IUPAC Periodic Table, and optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said mordenite zeolite has a mesopore surface area of greater than 30 m2/g and said mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
Abstract:
The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
Abstract:
The invention is directed to a bimetallic catalyst system adapted for the manufacture of xylenes, a process for making said catalyst system, and to the process of manufacture of xylenes using said catalyst system, providing, in embodiments, improved selectivity by at least one of higher ethylene saturation and low xylene loss, decreased susceptibility to poisoning from feedstream impurities, and ability to operate at less severe conditions.
Abstract:
A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
Abstract:
Methods and corresponding catalysts are provided for transalkylation of 1-ring (C9+) aromatic compounds, such as transalkylation to form para-xylene and/or other xylenes. Suitable catalysts include molecular sieves having a 3-D 12-member ring framework structure, molecular sieves having a 1-D 12-member ring framework structure, acidic microporous materials with a pore channel size of at least 6.0 Angstroms, and/or molecular sieves having a MWW framework structure. The methods include performing transalkylation where at least a portion of the feed to the transalkylation process is in the liquid phase. Optionally, the transalkylation conditions can correspond to conditions where a continuous liquid phase is present within the reaction environment. Some embodiments include liquid phase transalkylation processes for naphthalene-containing feedstock streams.
Abstract:
A catalyst system is disclosed for producing para-xylene from a C8 hydrocarbon mixture comprising ethylbenzene and at least one xylene isomer other than para-xylene. The catalyst system comprises a first catalyst bed and a second catalyst bed. The first catalyst bed comprises a first zeolite and a rhenium hydrogenation component. The first zeolite has a constraint index from 1 to 12, an average crystal size from 0.1 to 1 micron and has been selectivated to have an ortho-xylene sorption time of greater than 1200 minutes based on its capacity to sorb 30% of the equilibrium capacity of ortho-xylene at 120° C. and an ortho-xylene partial pressure of 4.5±0.8 mm of mercury. The second catalyst bed comprises a second zeolite and a rhenium hydrogenation component. The second zeolite has a constraint index ranging from 1 to 12 and an average crystal size of less than 0.1 micron.
Abstract:
Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, such as for example, cyclopentadiene, and catalyst compositions for use in such process. The process comprising the steps of contacting said feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form said product. The catalyst composition comprising a crystalline aluminosilicate having a constraint index of less than or equal to 5, and a Group 10 metal, and, optionally, a Group 11 metal, in combination with a Group 1 alkali metal and/or a Group 2 alkaline earth metal.