Abstract:
Disclosed herein are an autonomous driving robot apparatus and an autonomous driving method. The autonomous driving method of the autonomous driving robot apparatus includes receiving task information for autonomous driving from a server device for supporting autonomous driving; creating a route for autonomous driving based on the task information and performing autonomous driving; and selecting an autonomous driving operation corresponding to any one of moving, waiting, and wandering when arriving at a preset destination by performing autonomous driving along the route.
Abstract:
An apparatus for recognizing a position of a moving object includes a sensor information collector to collect sensor information associated with movement of the moving object, a camera to capture a front image based on the movement of the moving object, and a GPS receiver configured to receive a GPS position of the moving object. Further, the apparatus includes a location recognizer to display N number of particles, each of which indicates a candidate position of the moving object, in a certain region about a GPS location of the moving object on a map. The location recognizer then updates a location of the particles based on the movement of the moving object, and progressively reduces number of particles on the basis of accuracy of the position-updated particles, thereby recognizing the position of the moving object.
Abstract:
Disclosed herein are an apparatus and method for generating a topological map for navigation of a robot. The method for generating a topological map for navigation of a robot, performed by the apparatus for building the topological map for the navigation of the robot, includes calculating the physical size of a single pixel on a metric map of a space in which a mobile robot is to navigate, extracting the physical coordinates of the pixel on the metric map, building node data and edge data for the navigation of the mobile robot using the physical coordinates, and generating a topological map for the navigation of the mobile robot based on the built node data and the built edge data.
Abstract:
Disclosed herein are an autonomous driving robot apparatus and an autonomous driving method. The autonomous driving method of the autonomous driving robot apparatus includes receiving task information for autonomous driving from a server device for supporting autonomous driving; creating a route for autonomous driving based on the task information and performing autonomous driving; and selecting an autonomous driving operation corresponding to any one of moving, waiting, and wandering when arriving at a preset destination by performing autonomous driving along the route.
Abstract:
An apparatus for recognizing an indoor location using an RSSI (Received Signal Strength Intensity) map, includes an environment information acquirer configured to acquire indoor environment information and store the acquired indoor environment information on a node basis; a numerical map creator configured to create a numerical map; a field intensity creator configured to create the RSSI map; a dead-reckoning sensor configured to locate an area less than several meters within which the environment information acquire is actually located to locate a more accurate location within the area; a path information producer configured to produce path information including movable potential trajectories; and an initializer configured to initialize an initialization location of one or more candidate entities and fingerprint information.
Abstract:
A mobile robot having a returning mechanism includes one or more moving members mounted on a body of the mobile robot; and a cable member connected to one side of the mobile robot so as to supply the mobile robot with electrical power. Further, the mobile robot includes a returning member having a rigidity stronger than the cable member and disposed to wrap the cable member so that the cable member is placed within the returning member; and a take-up unit configured to pull the returning member to keep it taut.