Abstract:
The present invention provides for a system comprising a level shifter configured to receive a first clock signal from a first power domain, to receive a counter signal, to select one of a plurality of intermediate voltages in response to the received counter signal, and to generate a second clock signal in response to the received first clock signal and the selected intermediate voltage. A counter is coupled to the level shifter and configured to receive a divided clock signal and a comparison result signal, and to generate the counter signal in response to the received divided clock signal and comparison result signal. A divider is coupled to the counter and configured to receive the first clock signal and to generate the divided clock signal in response to the received first clock signal. A filter is coupled to the level shifter and configured to receive the second clock signal and to generate a first comparison signal in response to the received second clock signal. A fixed potential is configured to generate a second comparison signal. A comparator is coupled to the filter, the fixed potential, and the counter and configured to receive the first comparison signal and the second comparison signal, and to generate the comparison result signal in response to the received first comparison signal and the second comparison signal.
Abstract:
A technology for supplying a power supply voltage to a microprocessor. Before normal arithmetic processing of the microprocessor, duty cycle correction process for adjusting the duty cycle of a clock signal inside the microprocessor is performed. In the duty cycle correction process for adjusting the duty cycle, the duty cycle of the clock signal is adjusted so as to minimize the power voltage at which the microprocessor is still operable.
Abstract:
The disclosed methodology and apparatus measure the duty cycle of a reference clock signal that a clock circuit supplies to a duty cycle measurement (DCM) circuit. In one embodiment, the DCM circuit includes a capacitor driven by a charge pump. The reference clock signal drives the charge pump. The clock circuit varies the duty cycle of the reference clock signal among a number of known duty cycle values. The DCM circuit stores resultant capacitor voltage values corresponding to each of the known duty cycle values in a data store. The DCM circuit applies a test clock signal having an unknown duty cycle to the capacitor via the charge pump, thus charging the capacitor to a new voltage value that corresponds to the duty cycle of the test clock signal. Control software accesses the data store to determine the duty cycle to which the test clock signal corresponds.
Abstract:
The disclosed methodology and apparatus measure and correct the duty cycle of a reference clock signal that a clock circuit supplies to a duty cycle measurement (DCM) circuit. In one embodiment, the DCM circuit includes a capacitor driven by a charge pump. The reference clock signal drives the charge pump. The clock circuit varies the duty cycle of the reference clock signal among a number of known duty cycle values. The DCM circuit stores resultant capacitor voltage values corresponding to each of the known duty cycle values in a data store. The DCM circuit applies a test clock signal having an unknown duty cycle to the capacitor via the charge pump, thus charging the capacitor to a new voltage value that corresponds to the duty cycle of the test clock signal. Control software accesses the data store to determine the duty cycle to which the test clock signal corresponds, thus providing a measured duty cycle. The apparatus generates an error signal when the measured duty cycle varies from a predetermined duty cycle. The apparatus includes a variable duty cycle clock generator that alters the duty cycle of the test clock signal to reduce the error.
Abstract:
Embodiments of the disclosure provide systems and methods for clock duty cycle measurement. A clock signal and a complement of the clock signal are provided to a charge pump during first and second predetermined timing windows. A charge pump is operable to generate first and second output voltages in response to the clock signal and the complement of the clock signal during the first and second timing windows, respectively. In addition a predetermined positive voltage and a ground voltage are applied to the charge pump during predetermined third and fourth timing windows, respectively. The charge pump is operable to generate third and fourth output voltage signals corresponding to the predetermined positive and ground voltages during the third and fourth timing windows, respectively. The first, second, third and fourth voltages are then used to calculate the duty cycle of the clock.
Abstract:
The present invention provides for a system comprising a level shifter configured to receive a first clock signal from a first power domain, to receive a counter signal, to select one of a plurality of intermediate voltages in response to the received counter signal, and to generate a second clock signal in response to the received first clock signal and the selected intermediate voltage. A counter is coupled to the level shifter and configured to receive a divided clock signal and a comparison result signal, and to generate the counter signal in response to the received divided clock signal and comparison result signal. A divider is coupled to the counter and configured to receive the first clock signal and to generate the divided clock signal in response to the received first clock signal. A filter is coupled to the level shifter and configured to receive the second clock signal and to generate a first comparison signal in response to the received second clock signal. A fixed potential is configured to generate a second comparison signal. A comparator is coupled to the filter, the fixed potential, and the counter and configured to receive the first comparison signal and the second comparison signal, and to generate the comparison result signal in response to the received first comparison signal and the second comparison signal.
Abstract:
The present invention provides for a system comprising a level shifter configured to receive a first clock signal from a first power domain, to receive a counter signal, to select one of a plurality of intermediate voltages in response to the received counter signal, and to generate a second clock signal in response to the received first clock signal and the selected intermediate voltage. A counter is coupled to the level shifter and configured to receive a divided clock signal and a comparison result signal, and to generate the counter signal in response to the received divided clock signal and comparison result signal. A divider is coupled to the counter and configured to receive the first clock signal and to generate the divided clock signal in response to the received first clock signal. A filter is coupled to the level shifter and configured to receive the second clock signal and to generate a first comparison signal in response to the received second clock signal. A fixed potential is configured to generate a second comparison signal. A comparator is coupled to the filter, the fixed potential, and the counter and configured to receive the first comparison signal and the second comparison signal, and to generate the comparison result signal in response to the received first comparison signal and the second comparison signal.
Abstract:
In one embodiment, the disclosed methodology and apparatus measure relative duty cycle information of a clock signal with respect to an input node as the clock signal travels to selected nodes of a clock distribution network on an electronic circuit. The apparatus operates in a benchmark mode to determine benchmark duty cycle information and then subsequently operates an a relative mode to determine relative duty cycle information of the clock signal at a selected node in comparison to the clock signal at an external input node.
Abstract:
A system and system for automatic voltage calibration is presented. A voltage calibration system includes three main units, which are a voltage level trimming unit, a trim detection unit, and a trim control unit. The three units work in conjunction with each other during a trimming operation in order to identify a tap voltage that is closest to a target voltage. In one embodiment, the voltage calibration system may be used to calibrate a voltage regulator. Upon commencement of calibration, the voltage regulator's feedback loop is open, and the target voltage is selected as the input for the feedback port of the amplifier. The voltage regulator serves as a voltage comparator that compares each tap voltage to the target voltage. When the calibration is complete, regulator's feedback loop is closed and the closest tap voltage to the target voltage is used as the regulator's input.
Abstract:
The disclosed methodology and apparatus measures the duty cycle of a clock signal. A variable duty cycle circuit receives a clock signal from a clock signal generator. The variable duty cycle circuit adjusts the duty cycle of the clock signal by an amount dependent on a duty cycle index value that it receives. The variable duty cycle circuit supplies a duty-cycle adjusted clock signal to a divider circuit. The apparatus sweeps the frequency of the clock signal from a starting value up to a maximum frequency above which the divider circuit fails. The apparatus then determines the duty cycle of the duty-cycle adjusted clock signal from the maximum frequency.