Abstract:
The present invention provides a device and method for electromagnetic induction heating-assisted laser additive manufacturing of a titanium matrix composite and belongs to the technical field of laser additive manufacturing. The device includes a coaxial-powder feeding laser deposition system and an electromagnetic induction heating synchronous auxiliary system. The coaxial-powder feeding laser deposition system includes a substrate, a deposition sample, a laser head and an infrared thermometer. The electromagnetic induction heating synchronous auxiliary system includes an electromagnetic induction power supply auxiliary unit, a coil, a steering heightening mechanism, a driven shaft and a transverse sliding groove. The coil is connected to an output end of the electromagnetic induction power supply auxiliary unit. The coil and the laser head do synchronous movement to implement small-area real-time preheating and slow cooling on the deposition sample.
Abstract:
Disclosed are a Z-N catalyst for α-olefin polymerization and an application thereof, specifically, an industrial production catalyst consisting of (A) a solid catalyst component, (B) a cocatalyst organoaluminum compound and (C) an external electron donor compound and used for α-olefin polymerization or copolymerization processes. The catalyst component is prepared from a transition metal such as titanium and magnesium and a composite aromatic diacid diester/1,3-diether as an internal electron donor. One or more organoaluminum compounds or a mixture thereof serve as the cocatalyst. One or more structure control agent hydrocarbyl alkoxysilicons are compounded with one or more activity regulator organic acid esters as the external electron donor capable of automatically adjusting the polymerization rate. The Z-N catalyst is used for α-olefin polymerization/copolymerization, and can automatically adjust the polymerization rate at a higher polymerization temperature so as to maintain stable operation of a reactor.
Abstract:
A wireless charging heating system, a wireless charging system, a wireless charging heating method and a wireless charging method are provided. The wireless charging heating system includes a lithium-ion battery stack; a battery stack power frequency converter connected with the lithium-ion battery stack and configured to convert direct current output from the lithium-ion battery stack into high-frequency alternating current; a heating system switch connected with the battery stack power frequency converter and configured to control on or off of the high-frequency alternating current; a heating coil connected with the heating system switch and configured to heat the lithium-ion battery stack; and a single chip microcomputer connected with the lithium-ion battery stack, the battery stack power frequency converter and the heating system switch and configured to monitor temperature of the lithium-ion battery stack and control an operating state of the battery stack power frequency converter and the heating system switch.
Abstract:
Disclosed are a Z-N catalyst for α-olefin polymerization and an application thereof, specifically, an industrial production catalyst consisting of (A) a solid catalyst component, (B) a cocatalyst organoaluminum compound and (C) an external electron donor compound and used for α-olefin polymerization or copolymerization processes. The catalyst component is prepared from a transition metal such as titanium and magnesium and a composite aromatic diacid diester/1,3-diether as an internal electron donor. One or more organoaluminum compounds or a mixture thereof serve as the cocatalyst. One or more structure control agent hydrocarbyl alkoxysilicons are compounded with one or more activity regulator organic acid esters as the external electron donor capable of automatically adjusting the polymerization rate. The Z-N catalyst is used for α-olefin polymerization/copolymerization, and can automatically adjust the polymerization rate at a higher polymerization temperature so as to maintain stable operation of a reactor.
Abstract:
The invention discloses a wastewater processing method of hydrolysis-acidification enhanced by addition of zero-valent iron (ZVI), including the following steps: 3˜6 ZVI-filling layers are settled in the middle of an anaerobic hydrolysis-acidification reactor. Excess sludge taken from sewage treatment plant using as seed sludge is added into this anaerobic hydrolysis-acidification reactor for startup and domestication. In the present invention, ZVI are added into this anaerobic hydrolysis-acidification reactor to accelerate organic matters degradation and produce more acetic acids, accompanied with higher COD removal obtained. ZVI can be protected from rust in this anaerobic biological environment due to the air isolation. Also, ZVI can enhance anaerobic hydrolysis of wastewater through reducing refractory pollutants involved in wastewaters. This novel method made the effluent from the hydrolysis-acidification reactor present less COD concentration and simpler substrate form, benefiting for the following anaerobic methanogenesis or aerobic treatment.