Abstract:
A solid catalyst component for the polymerization of olefins made from or containing Mg, Ti, halogen and an electron donor of formula (I) or (II) When activated with an aluminum alkyl and optionally an external electron donor, solid catalyst component can give high activity and stereospecificity in the polymerization of olefins.
Abstract:
Methods for preparing metallocene-based catalyst systems containing an activator-support are disclosed. These methods are directed to contacting an activator-support, an organoaluminum compound, and a mixture containing a metallocene compound and cyclohexene or a mixture of cyclohexane and 1-hexene, resulting in catalyst systems with increased catalytic activity for the polymerization of olefins. The olefin polymers can be used to produce film products with high haze values.
Abstract:
Process for the preparation of a solid catalyst system comprising the steps of preparing a liquid clathrate comprising a mixing of an aluminoxane, an aromatic compound and an organo-silicon compound, wherein the mol-ratio between the organo-silicon compound and aluminum of the aluminoxane is below 0.1, mixing said liquid clathrate with an organometallic compound obtaining a liquid mixture, and precipitating the solid catalyst system out of said liquid mixture by adding a saturated aliphatic compound to said mixture liquid.
Abstract:
Methods for preparing metallocene-based catalyst systems containing an activator-support are disclosed. These methods are directed to contacting an activator-support, an organoaluminum compound, and a mixture containing a metallocene compound and cyclohexene or a mixture of cyclohexane and 1-hexene, resulting in catalyst systems with increased catalytic activity for the polymerization of olefins.
Abstract:
Disclosed are a Z-N catalyst for α-olefin polymerization and an application thereof, specifically, an industrial production catalyst consisting of (A) a solid catalyst component, (B) a cocatalyst organoaluminum compound and (C) an external electron donor compound and used for α-olefin polymerization or copolymerization processes. The catalyst component is prepared from a transition metal such as titanium and magnesium and a composite aromatic diacid diester/1,3-diether as an internal electron donor. One or more organoaluminum compounds or a mixture thereof serve as the cocatalyst. One or more structure control agent hydrocarbyl alkoxysilicons are compounded with one or more activity regulator organic acid esters as the external electron donor capable of automatically adjusting the polymerization rate. The Z-N catalyst is used for α-olefin polymerization/copolymerization, and can automatically adjust the polymerization rate at a higher polymerization temperature so as to maintain stable operation of a reactor.
Abstract:
A solid, spheroidal polymerization catalyst having a particle size distribution characterized by a Dm*/Dn of less than 3.0, the catalyst comprising a phosphinimine catalyst, a cocatalyst and a magnesium chloride support. A process for the polymerization of ethylene with one or more alpha olefin catalyzed by a solid, spheroidal polymerization catalyst having a particle size distribution characterized by a Dm*/Dn of less than 3.0, the catalyst comprising a phosphinimine catalyst, a cocatalyst and a magnesium chloride support.
Abstract:
The present invention provides a method for preparing a polyolefin having a broad molecular weight distribution. More specifically, the present invention provides a method for preparing a polyolefin having a broad molecular weight distribution and an ultra-high molecular weight in which an organometallic complex containing a specific Ti—Al complex structure is used as a molecular weight controller (i.e., molecular weight enhance) in the polymerization of an olefin monomer, thereby enabling both solution polymerization and slurry polymerization, particularly enabling the molecular weight distribution to be more readily and effectively controlled.