Abstract:
The present invention relates to a preparation method of a highly active supported metallocene catalyst which can prepare a polyolefin of high bulk density. More specifically, the present invention provides a method of preparing the supported metallocene catalyst in which one or more metallocene catalysts are loaded on the silica carrier of which the inside is penetrated by more cocatalyst than the prior art and the outside is attached with a substantial amount of the cocatalyst. The catalyst according to the present invention can prepare a polyolefin polymer with improved bulk density and efficiency while maintaining its highly active catalytic characteristic.
Abstract:
The present invention relates to a novel metallocene compound, a catalyst composition including the same, and a method of preparing an olefinic polymer by using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used for producing olefinic polymers, have outstanding polymerizing ability, and can produce olefinic polymers of ultra high molecular weight. In particular, when the metallocene compound according to the present invention is employed, an olefinic polymer of ultra high molecular weight can be obtained because it shows high polymerization activity even when it is supported on a carrier and maintains high activity even in the presence of hydrogen because of its low hydrogen reactivity.
Abstract:
The present disclosure relates to a polyethylene suitable for preparing fibers with enhanced yellow index and filterability in the spinning process by having improved aging lifetime of the polyethylene, and a preparation method of the same.
Abstract:
Provided is a polyethylene. More particularly, provided is a polyethylene which has excellent abrasion resistance and thus is suitable for fiber production.
Abstract:
The present invention relates to a method for preparing polyolefin that can easily and effectively prepare polyolefin having high molecular weight and various molecular weight distributions, which was difficult to prepare using the existing metallocene catalyst, and polyolefin prepared thereby. The method for preparing polyolefin comprises the step of polymerizing olefin monomers, in the presence of a metallocene supported catalyst wherein a metallocene compound having a specific chemical structure is supported in a carrier, and hydrogen gas.
Abstract:
The present invention relates to a hybrid supported metallocene catalyst and a polyolefin preparation method using the same. Using the hybrid supported metallocene catalyst can not only significantly reduce the amount of wax produced when polymerizing olefin monomers, but can also enhance the stress cracking resistance of the polyolefin that is prepared.
Abstract:
A method of preparing a supported metallocene catalyst capable of more effectively preparing a polyolefin which may be preferably used for blow molding, etc., because its molecular weight distribution is such that polymer elasticity is increased to improve swell, is provided.
Abstract:
The present invention relates to polyolefin powder for preparing fiber, and fiber comprising the same. According to the present invention, provided is polyolefin, which exhibits a high molecular weight range and narrow molecular weight distribution and in which the formation of a gel deteriorating the quality of fiber is reduced. Therefore, by using the polyolefin, the present invention exhibits molecular weight, density and narrow molecular weight distribution, which are equivalent to those of conventional polyolefin, but the number of gels having a large particle diameter is remarkably reduced, and therefore, the present invention can provide fiber having excellent tenacity and tensile strength half-life.
Abstract:
The present invention relates to polyolefin that has high molecular weight, wide molecular weight distribution and high long chain branch content, and thus, has excellent environmental crack resistance and processibility. The polyolefin of the present invention has excellent processibility and stability, and thus, may be preferably used as a food container, a bottle cap, and the like.
Abstract:
The present invention relates to a method for preparing a hybrid supported metallocene catalyst. More specifically, the present invention relates to a method for preparing a hybrid supported metallocene catalyst by using two or more different types of metallocene compounds. One type of the metallocene compounds shows a high polymerization activity even when it is supported, and thus the catalyst has an excellent activity and can be utilized in the polymerization of olefinic polymers having ultra-high molecular weight. Based on the hybrid supported metallocene catalyst obtained according to the preparation method of the present invention, an olefinic polymer having high molecular weight and the desired physical property can be prepared.