Abstract:
The present invention relates to a metallocene supported catalyst including a novel single metallocene compound having excellent polymerization activity, and a process for producing a polypropylene having excellent processability and broad molecular eight distribution using the same.
Abstract:
This disclosure relates to ethylene interpolymer compositions. Specifically, ethylene interpolymer products having: a Dilution Index (Yd) greater than 0; total catalytic metal ≥3.0 ppm; ≥0.03 terminal vinyl unsaturations per 100 carbon atoms, and; optionally a Dimensionless Modulus (Xd) greater than 0. The disclosed ethylene interpolymer products have a melt index from about 0.3 to about 500 dg/minute, a density from about 0.869 to about 0.975 g/cm3, a polydispersity (Mw/Mn) from about 2 to about 25 and a CDBI50 from about 20% to about 97%. Further, the ethylene interpolymer products are a blend of at least two ethylene interpolymers; where one ethylene interpolymer is produced with a single-site catalyst formulation and at least one ethylene interpolymer is produced with a heterogeneous catalyst formulation.
Abstract:
Herein discussed is a method of producing a polyolefin blend, comprising providing a catalyst system comprising a first catalyst, a second catalyst, a first co-catalyst, a second co-catalyst, and a third co-catalyst; polymerizing at least one monomer in a single step; obtaining the polyolefin blend having a Kinematic viscosity (Kv) of 6 to 1000 cSt at 100 degrees C., wherein the Kv is adjusted by varying the ratio of the first catalyst to the second catalyst without mixing separately-synthesized polymers.
Abstract:
Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene. A ratio for the catalyst blend of the catalysts that generates a polymer having a bPDI that matches a polymer fabrication process is selected, and the product specific polyolefin is made using the catalyst blend.
Abstract:
Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)(C5HcR2d)HfX2. The second catalyst compound includes at least one of the following general formulas: In both catalyst systems, the R groups can be independently selected from any number of substituents, including, for example, H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, among others.
Abstract:
This disclosure relates to rotomolded articles, having a wall structure, where the wall structure contains at least one layer containing an ethylene interpolymer product, or a blend containing an ethylene interpolymer product, where the ethylene interpolymer product has: a Dilution Index (Yd) greater than −1.0; total catalytic metal ≧3.0 ppm; ≧0.03 terminal vinyl unsaturations per 100 carbon atoms. The ethylene interpolymer products have a melt index from about 0.5 to about 15 dg/minute, a density from about 0.930 to about 0.955 g/cm3, a polydispersity (Mw/Mn) from about 2 to about 6 and a CDBI50 from about 50% to about 98%. Further, the ethylene interpolymer products are a blend of at least two ethylene interpolymers; where one ethylene interpolymer is produced with a single-site catalyst formulation and at least one ethylene interpolymer is produced with a heterogeneous catalyst formulation.
Abstract:
Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso/rac ratio that is between about 0.9 and about 1.2.
Abstract:
This disclosure relates to multilayer films having improved caulkability. These multilayer films have at least one layer containing an ethylene interpolymer product, or a blend containing an ethylene interpolymer product, where the ethylene interpolymer product has: a Dilution Index (Yd) greater than 0; total catalytic metal ≧3.0 ppm; ≧0.03 terminal vinyl unsaturations per 100 carbon atoms, and; optionally a Dimensionless Modulus (Xd) greater than 0. The ethylene interpolymer products have a melt index from about 0.4 to about 100 dg/minute, a density from about 0.950 to about 0.970 g/cm3, a polydispersity (Mw/Mn) from about 2 to about 25 and a CDBI50 from about 55% to about 97%. Further, the ethylene interpolymer products are a blend of at least two ethylene interpolymers; where one ethylene interpolymer is produced with a single-site catalyst formulation and at least one ethylene interpolymer is produced with a heterogeneous catalyst formulation.
Abstract:
Silica-coated alumina activator-supports, and catalyst compositions containing these activator-supports, are disclosed. Methods also are provided for preparing silica-coated alumina activator-supports, for preparing catalyst compositions, and for using the catalyst compositions to polymerize olefins.
Abstract:
Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.