Abstract:
A quantification method includes a calibration curve preparing step to measure a standard solution, which has been prepared by adding sodium ions so that a sodium ion content of the standard solution is equaled to a sodium ion content of a sample to be measured with a method employing a reaction that activates a limulus reagent and/or a biochemical luminescent reaction caused by ATP, luciferin, and luciferase, and to prepare a calibration curve that represents a relation between a measurement value and an amount of a component to be measured; a sample measuring step to measure the sample to be measured with a method being the same as that used in the calibration curve preparing step; and a quantifying step to find, by using the calibration curve, an amount of the component to be measured in the sample to be measured from a measurement value in the sample measuring step.
Abstract:
The present invention provides a mutant beetle luciferase and the like, having mutation in which the amino acid corresponding to valine at position 288 in the amino acid sequence of wild-type Photinus pyralis luciferase is isoleucine, leucine or phenylalanine, mutation in which the amino acid corresponding to leucine at position 376 in the aforementioned sequence is proline, mutation in which the amino acid corresponding to glutamic acid at position 455 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, or mutation in which the amino acid corresponding to glutamic acid at position 488 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, in the amino acid sequence encoding a wild-type beetle luciferase, and characterized in that a luminescence intensity due to a luciferin-luciferase luminescence reaction in a 0.9% by mass NaCl solution is 50% or more of that in a NaCl-free solution.
Abstract:
The present invention provides a mutant beetle luciferase and the like, having mutation in which the amino acid corresponding to valine at position 288 in the amino acid sequence of wild-type Photinus pyralis luciferase is isoleucine, leucine or phenylalanine, mutation in which the amino acid corresponding to leucine at position 376 in the aforementioned sequence is proline, mutation in which the amino acid corresponding to glutamic acid at position 455 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, or mutation in which the amino acid corresponding to glutamic acid at position 488 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, in the amino acid sequence encoding a wild-type beetle luciferase, and characterized in that a luminescence intensity due to a luciferin-luciferase luminescence reaction in a 0.9% by mass NaCl solution is 50% or more of that in a NaCl-free solution.
Abstract:
The present invention provides a method comprising allowing a reaction of a sample, a reagent containing Factor C, which can be activated by binding with endotoxin, and a synthetic luminescent substrate comprising a luminescent substrate bound to a peptide, for release of the luminescent substrate from the synthetic luminescent substrate, allowing a luminescent enzyme to act on the luminescent substrate released in the luminescent substrate release step, for measurement of the luminescence intensity, and quantifying the level of endotoxin in the sample based on a measured value obtained in the luminescence measuring step, the method enabling endotoxin to be simply and quickly measured at a level that cannot be detected in conventional methods for endotoxin measurement, without use of any dedicated measuring device.