摘要:
Systems and methods are disclosed that allow for improved management and control of packet forwarding in network systems. Network devices and tool optimizers and a related systems and methods are disclosed for improved packet forwarding between network sources and destination tools in a network monitoring environment. The network devices and tool optimizers disclosed can include a graphical user interfaces (GUIs) through which a user can create and modify filters and select associated filter criteria for forwarding packets from input ports to output ports. The network devices and tool optimizers can also automatically generate filter rules and apply them to the appropriate filter engines so that packets are forwarded as desired by the user. The GUI can be configured to provide other features as well.
摘要:
Systems and methods are disclosed for in-line removal of duplicate network packets in network packet streams operating at high speeds (e.g., 1-10 Gbps and above). A hash generator applies at least one hash algorithm to incoming packets to form one or more different hash values. The packet deduplication systems and methods then use the one or more hash values for each incoming packet to identify data stored for previously received backs and use the identified data to determine if incoming packets are duplicate packets. Duplicate packets are then removed from the output packet stream thereby reducing duplicate packets for downstream processing. A deduplication window can further be utilized to limit the amount of data stored for previous packets based upon one or more parameters, such as an amount of time that has passed and/or a number of packets for which data has been stored. These parameters can also be selected, configured and/or adjusted to achieve desired operational objectives.
摘要:
Systems and methods are disclosed for unified systems of network tool optimizers (NTOs). A NTO supervisor device controls switch fabric circuitry to interconnect a plurality of NTO member devices so that packets received at a source port for one NTO member device can be output to a destination port for a different NTO member device. The NTO supervisor device is further configured to analyze filters for the NTO member devices and to generate filter rules for forwarding packets among the various NTO member devices using the switch fabric circuitry. Further, additional secondary NTO supervisor devices can also be included within the unified NTO system to further expand the system. As such, a plurality of NTO member devices are managed and controlled by one or more NTO supervisor devices to form a highly scalable and efficient unified NTO system.
摘要:
Systems and methods are disclosed for precise generation of phase variation in digital signals. The disclosed signal generation embodiments generate a pattern of information bits that represents a digital signal with desired phase variations and transmit this digital pattern at high speed utilizing a serializer to generate a high speed bit stream. The high speed bit stream can be used to generate one or more digital signals, such as clock signals, having desired rates and desired phase variations. In certain embodiments, the desired phase variation can be introduced into the resulting digital signal by removing and/or inserting bits in a digital pattern thereby moving logic transitions (e.g., rising edge transitions, falling edge transitions) as desired within the resulting digital signal. In addition to clock signals, the resulting digital signals generated can be control signals, data signals and/or any other desired digital signal.
摘要:
Systems and methods are disclosed for precise generation of phase variation in digital signals. The disclosed signal generation embodiments generate a pattern of information bits that represents a digital signal with desired phase variations and transmit this digital pattern at high speed utilizing a serializer to generate a high speed bit stream. The high speed bit stream can be used to generate one or more digital signals, such as clock signals, having desired rates and desired phase variations. In certain embodiments, the desired phase variation can be introduced into the resulting digital signal by removing and/or inserting bits in a digital pattern thereby moving logic transitions (e.g., rising edge transitions, falling edge transitions) as desired within the resulting digital signal. In addition to clock signals, the resulting digital signals generated can be control signals, data signals and/or any other desired digital signal.
摘要:
Systems and methods are disclosed for utilizing slave (receive) time-stamp clock rates that are different from master (sender) time-stamp clock rates to randomize and thereby reduce systematic time-stamp granularity errors in the communication of network packets. The slave (receive) time-stamp clock rate for some embodiments is set to be a fixed value that has a relationship with the master (sender) time-stamp clock rate such that the ratio of the slave (receive) clock rate to the master (sender) clock rate is a rational number. Other embodiments use a time-varying frequency for the slave (receive) time-stamp clock rate to randomize the slave (receive) time-stamp clock with respect to the master (sender) time-stamp clock. Additional time-stamps can also be generated using a slave (receive) time-stamp clock having a rate set to equal the rate of the master (sender) time-stamp clock signal. Further spread spectrum and/or delta-sigma modulation techniques can be applied to effectively randomize the slave (receive) time-stamp clock.
摘要:
Systems and methods are disclosed that allow for improved management and control of packet forwarding in network systems. Network devices and tool optimizers and a related systems and methods are disclosed for improved packet forwarding between input ports and output ports. The input ports and output ports are configured to be connected to source devices and destination devices, for example, network sources and destination tools in a network monitoring environment. The network devices and tool optimizers disclosed can use a packet processing system whereby forwarding behavior is governed by matching packets in parallel against multiple user-specified packet filtering criteria, and by performing forwarding actions associated with all such matching filter criteria. The multi-action packet forwarding can be implemented using hardware configured to directly provide multi-action packet forwarding and/or hardware configured to provide single-packet-forwarding that has been subsequently configured using filter engines to provide multi-action packet forwarding.
摘要:
Systems and methods are disclosed for utilizing slave (receive) time-stamp clock rates that are different from master (sender) time-stamp clock rates to randomize and thereby reduce systematic time-stamp granularity errors in the communication of network packets. The slave (receive) time-stamp clock rate for some embodiments is set to be a fixed value that has a relationship with the master (sender) time-stamp clock rate such that the ratio of the slave (receive) clock rate to the master (sender) clock rate is a rational number. Other embodiments use a time-varying frequency for the slave (receive) time-stamp clock rate to randomize the slave (receive) time-stamp clock with respect to the master (sender) time-stamp clock. Additional time-stamps can also be generated using a slave (receive) time-stamp clock having a rate set to equal the rate of the master (sender) time-stamp clock signal. Further spread spectrum and/or delta-sigma modulation techniques can be applied to effectively randomize the slave (receive) time-stamp clock.
摘要:
Systems and methods are disclosed for utilizing large packet sizes to reduce unpredictable network delay variations in delivering timing packets across networks for use with respect to network timing protocols. By increasing the size of the timing packets, the disclosed embodiments reduce or eliminate the blocking effect caused by size differences between timing packets and relatively large packets carried through a packet network. By reducing or eliminating this blocking effect, the disclosed embodiments provide significant advantages in reducing the complexity of implementing robust timing protocols for handling unpredictable delays in the communication of timing packets. The size of timing packets can be increased, for example, by adding fill data to timing data to form large timing packets. A variety of large packet sizes can be used for the timing packets, and timing packets can preferably be made to be equal to the maximum transmission unit (MTU) for the network.
摘要:
Systems and methods are disclosed that allow for improved management and control of packet forwarding in network systems. Network devices and tool optimizers and a related systems and methods are disclosed for improved packet forwarding between input ports and output ports. The input ports and output ports are configured to be connected to source devices and destination devices, for example, network sources and destination tools in a network monitoring environment. The network devices and tool optimizers disclosed can use superset packet forwarding, such that ingress filter engines are configured with ingress filter rules so as to forward a superset of packets to output ports associated with overlapping filters. Egress filter engines are configured with egress filter rules to then determine which of the superset packets are actually sent out the output ports.