Abstract:
What is disclosed is a dry etching gas containing 1,3,3,3-tetrafluoropropene, wherein 1,3,3,3-tetrafluoropropene has purity of 99.5 mass % or more, and a total of concentration of each mixed metal component of Fe, Ni, Cr, Al, and Mo is 500 mass ppb or less. Furthermore, regarding to the dry etching gas, it is preferable that a content of nitrogen is 0.5 volume % or less, and that a content of water is 0.05 mass % or less. In a dry etching with a plasma gas obtained by making a dry etching gas into plasma, the dry etching gas of the present invention can improve etching selectivity of silicon-based material with respect to a mask.
Abstract:
An object of the present invention is to remove a compound A from “sevoflurane containing fluoromethyl-1,1,3,3,3-pentafluoroisopropenyl ether (compound A)” so as to collect high-purity sevoflurane. The present invention concerns a method for producing sevoflurane containing substantially no compound A, comprising the following steps of: bringing a composition containing hydrogen fluoride (HF) and water at a mass ratio of 1:1 to 1:30 into contact with a 1st organic liquid containing sevoflurane and a compound A, thereby obtaining a 2nd organic liquid containing the compound A in an amount that is lower than that in the 1st organic liquid (step 1a); and distilling the 2nd organic liquid under the presence of a degradation inhibitor, thereby obtaining sevoflurane containing substantially no compound A as a main distillation fraction (step 2).
Abstract:
Disclosed is a fluorine-containing sulfonic acid salt resin having a repeating unit represented by the following general formula (3). In the formula, each A independently represents a hydrogen atom, a fluorine atom or a trifluoromethyl group, and n represents an integer of 1-10. W represents a bivalent linking group, R01 represents a hydrogen atom or a monovalent organic group, and M+ represents a monovalent cation. A resist composition containing this resin is further superior in sensitivity, resolution and reproducibility of mask pattern and is capable of forming a pattern with a low LER.
Abstract:
Disclosed is a method for producing a hexafluoroisopropanol, including the steps of (a) purifying a mixture containing hexafluoroacetone and at least 1,1,1-trifluoro-2,2-dichloroethane as an impurity, thereby obtaining a purified hexafluoroacetone containing 120 ppm or lower of the 1,1,1-trifluoro-2,2-dichloroethane; and (b) bringing hydrogen (H2) into contact with the purified hexafluoroacetone in the presence of a catalyst, thereby hydrogenating the hexafluoroacetone into the hexafluoroisopropanol. It is possible by this method to produce the hexafluoroisopropanol with a short reaction time and a high conversion. Therefore, it is possible to particularly advantageously produce fluoromethyl hexafluoroisopropyl ether (sevoflurane) by using the hexafluoroisopropanol produced by the method.
Abstract:
According to the present invention, there is provided a fluorine-containing sulfonate resin having a repeating unit of the following general formula (3). In order to prevent deficiency such as roughness after pattern formation or failure in pattern formation, the fluorine-containing sulfonate resin incorporates therein a photoacid generating function and serves as a resist resin in which “a moiety capable of changing its developer solubility by the action of an acid” and “a moiety having a photoacid generating function” are arranged with regularity.
Abstract:
Disclosed is a fluorine-containing sulfonic acid salt resin having a repeating unit represented by the following general formula (3). In the formula, each A independently represents a hydrogen atom, a fluorine atom or a trifluoromethyl group, and n represents an integer of 1-10. W represents a bivalent linking group, R01 represents a hydrogen atom or a monovalent organic group, and M+ represents a monovalent cation. A resist composition containing this resin is further superior in sensitivity, resolution and reproducibility of mask pattern and is capable of forming a pattern with a low LER.
Abstract:
By using an organic base when a carboxylic acid bromodifluoroethyl ester is sulfinated by using a sulfinating agent, there is obtained 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfinic acid ammonium salt. By oxidizing the 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfinic acid ammonium salt, there is obtained 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfonic acid ammonium salt. By using the 2-(alkylcarbonyloxy)-1,1-difluoroethanesulfonic acid ammonium salt as a raw material and exchanging it into an onium salt directly or through saponification/esterification, there can be obtained a 2-alkylcarbonyloxy-1,1-difluoroethanesulfonic acid onium salt.